Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters of given sizes (cardinalities) minimizing the sum (over both clusters) of the intracluster sums of squared distances from the elements of the clusters to their centers is considered. It is assumed that the center of one of the sought clusters is specified at the desired (arbitrary) point of space (without loss of generality, at the origin), while the center of the other one is unknown and determined as the mean value over all elements of this cluster. It is shown that unless P = NP, there is no fully polynomial-time approximation scheme for this problem, and such a scheme is substantiated in the case of a fixed space dimension.

Авторлар туралы

A. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: kelm@math.nsc.ru
Ресей, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

V. Khandeev

Sobolev Institute of Mathematics, Siberian Branch

Email: kelm@math.nsc.ru
Ресей, pr. Akademika Koptyuga 4, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016