Comparison of the treatment results of humerus diaphysis post-traumatic false joints using vascularized bone grafts with and without a monitor skin flap: Retrospective cohort study

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The use of the microvascular flap in reconstructive surgery of complicated nonunions of the diaphysis of the humerus is highly valuable. Flaps with compromised blood supply are possible in up to 10% of cases and often lead to the failure of vascularized reconstruction. The combined skin + bone graft is a simple, useful, and reliable option for flap vitality control with a high success rate.

OBJECTIVE: To compare microvascular grafting with versus without monitoring the skin flap.

MATERIALS AND METHODS: Forty-one microvascular grafting was performed from 2010 to 2017 in patients with humeral non-union and bone defects in the Department of Microsurgery and Trauma of the Hand of Priorov National Medical Research Center of Traumatology and Orthopedics. A combined skin bone flap was used in 23 (56%) patients, and in 18 (44%) patients, grafting was performed without monitoring the skin flap Computed tomography and X-ray imaging were used to monitor non-union healing. The use of a signal skin flap is an effective way to control blood flow in the graft and improves treatment results.

RESULTS: In the group without monitoring of the skin flap, non-union healing was documented in 14 (77%) cases. In the group with monitoring of the skin flap, nonunion healing occurred in 22 (96%) cases.

CONCLUSION: Monitoring the skin flap is an effective option to ensure microvascular flap blood supply control and improves the outcomes in humeral nonunion healing.

About the authors

Igor O. Golubev

Priorov National Medical Research Center of Traumatology and Orthopedics; Russian Peoples’ Friendship University

Email: iog305@mail.ru
ORCID iD: 0000-0002-1291-5094

MD, PhD, Dr. Sci. (Med.), Head of the department of microsurgery and hand injury

Russian Federation, 10, st. Priorova, 127299, Moscow; 6 Miklukho-Maklaya street, 117198 Moscow

Anna R. Sarukhanyan

Russian Peoples’ Friendship University

Email: annesr@mail.ru
ORCID iD: 0009-0009-8088-2309

traumatologist-orthopedist

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

M. V. Merkulov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: hand-clinic@mail.ru
ORCID iD: 0009-0004-9362-3449

MD, Dr. Sci. (Med.), traumatologist-orthopedist

Russian Federation, 10, st. Priorova, 127299, Moscow

Oleg M. Bushuev

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: bushuev_oleg@mail.ru
ORCID iD: 0009-0002-0051-2666

MD, Cand. Sci. (Med.), traumatologist-orthopedist

Russian Federation, 10, st. Priorova, 127299, Moscow

Galina N. Shiryaeva

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: hand-clinic@mail.ru

MD, Cand. Sci. (Med.), traumatologist-orthopedist

Russian Federation, 10, st. Priorova, 127299, Moscow

Il'ya A. Kutepov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: kutepov_cito@mail.ru
ORCID iD: 0009-0001-3802-2577

MD, Cand. Sci. (Med.), traumatologist-orthopedist

Russian Federation, 10, st. Priorova, 127299, Moscow

Vasiliy D. Kuznetzov

Priorov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: Dr.kuznetsovvd@gmail.com
ORCID iD: 0000-0003-1745-8010

graduate student, traumatologist-orthopedist

Russian Federation, 10, st. Priorova, 127299, Moscow

References

  1. Chae MP, Rozen WM, Whitaker IS, et al. Current evidence for postoperative monitoring of microvascular free flaps: a systematic review. Ann Plast Surg. 2015;74(5):621–632. doi: 10.1097/SAP.0b013e3181f8cb32
  2. Harrison DH, Girling M, Mott G. Methods of assessing the viability of free flap transfer during the postoperative period. Clin Plast Surg. 1983;10(1):21–36.
  3. Khatri N, Zhang S, Kale SS. Current Techniques for Postoperative Monitoring of Microvascular Free Flaps. J Wound Ostomy Continence Nurs. 2017;44(2):148–152. doi: 10.1097/WON.0000000000000314
  4. Molitor M, Mestak O, Pink R, et al. The use of sentinel skin islands for monitoring buried and semi-buried micro-vascular flaps. Part II: Clinical application. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2021;165(2):131–138. doi: 10.5507/bp.2021.017
  5. Abdel-Galil K, Mitchell D. Postoperative monitoring of microsurgical free tissue transfers for head and neck reconstruction: a systematic review of current techniques — part I. Non-invasive techniques. Br J Oral Maxillofac Surg. 2009;47(5):351–355. doi: 10.1016/j.bjoms.2008.11.013
  6. Goldberg J, Sepka RS, Perona BP, et al. Laser Doppler blood flow measurements of common cutaneous donor sites for reconstructive surgery. Plast Reconstr Surg. 1990;85(4):581–586. doi: 10.1097/00006534-199004000-00013
  7. Ozturk CN, Ozturk C, Ledinh W, et al. Variables affecting postoperative tissue perfusion monitoring in free flap breast reconstruction. Microsurgery. 2015;35(2):123–128. doi: 10.1002/micr.22276
  8. Schmulder A, Gur E, Zaretski A. Eight-year experience of the Cook-Swartz Doppler in free-flap operations: microsurgical and reexploration results with regard to a wide spectrum of surgeries. Microsurgery. 2011;31(1):1–6. doi: 10.1002/micr.20816
  9. Yuen JC, Feng Z. Monitoring free flaps using the laser Doppler flowmeter: five-year experience. Plast Reconstr Surg. 2000;105(1):55–61. doi: 10.1097/00006534-200001000-00009
  10. Chubb D, Rozen WM, Whitaker IS, et al. The efficacy of clinical assessment in the postoperative monitoring of free flaps: a review of 1140 consecutive cases. Plast Reconstr Surg. 2010;125(4):1157–1166. doi: 10.1097/PRS.0b013e3181d0ac95
  11. Jallali N, Ridha H, Butler PE. Postoperative monitoring of free flaps in UK plastic surgery units. Microsurgery. 2005;25(6):469–472. doi: 10.1002/micr.20148
  12. Whitaker IS, Oliver DW, Ganchi PA. Postoperative monitoring of microvascular tissue transfers: current practice in the United Kingdom and Ireland. Plast Reconstr Surg. 2003;111(6):2118–2119. doi: 10.1097/01.PRS.0000057070.74385.AF
  13. Cervenka B, Bewley AF. Free flap monitoring: a review of the recent literature. Curr Opin Otolaryngol Head Neck Surg. 2015;23(5):393–398. doi: 10.1097/MOO.0000000000000189
  14. Chao AH, Meyerson J, Povoski SP, Kocak E. A review of devices used in the monitoring of microvascular free tissue transfers. Expert Rev Med Devices. 2013;10(5):649–660. doi: 10.1586/17434440.2013.827527
  15. Ferguson REH Jr, Yu P. Techniques of monitoring buried fasciocutaneous free flaps. Plast Reconstr Surg. 2009;123(2):525–532. doi: 10.1097/PRS.0b013e318196b9a3
  16. Imran Y, Zulmi W, Halim AS. Skin paddle as an indicator of the viability of vascularised fibular graft. Singapore Med J. 2004;45(3):110–112.
  17. Kääriäinen M, Halme E, Laranne J. Modern postoperative monitoring of free flaps. Curr Opin Otolaryngol Head Neck Surg. 2018;26(4):248–253. doi: 10.1097/MOO.0000000000000467
  18. Pellini R, Pichi B, Ruggieri M, et al. Venous flow-through flap as an external monitor for buried radial forearm free flap in head and neck reconstruction. J Plast Reconstr Aesthet Surg. 2006;59(11):1217–1221. doi: 10.1016/j.bjps.2006.01.026
  19. Yoshimura M, Shimamura K, Iwai Y, et al. Free vascularized fibular transplant. A new method for monitoring circulation of the grafted fibula. J Bone Joint Surg Am. 1983;65(9):1295–1301.
  20. Furuta S, Hataya Y, Ishigaki Y, Watanabe T. Monitoring the free radial forearm flap in pharyngo-oesophageal reconstruction. Br J Plast Surg. 1997;50(1):40–42. doi: 10.1016/s0007-1226(97)91281-9
  21. Al Qattan MM, Boyd JB. «Mini paddle» for monitoring the fibular free flap in mandibular reconstruction. Microsurgery. 1994;15(2):153–154. doi: 10.1002/micr.1920150213
  22. Tan NC, Shih HS, Chen CC, et al. Distal skin paddle as a monitor for buried anterolateral thigh flap in pharyngoesophageal reconstruction. Oral Oncol. 2012;48(3):249–252. doi: 10.1016/j.oraloncology.2011.09.015
  23. Stranix JT, Jacoby A, Lee ZH, et al. Skin Paddles Improve Muscle Flap Salvage Rates After Microvascular Compromise in Lower Extremity Reconstruction. Ann Plast Surg. 2018;81(1):68–70. doi: 10.1097/SAP.0000000000001425
  24. Dat AD, Loh IW, Bruscino-Raiola F. Free-flap salvage: muscle only versus skin paddle — an Australian experience. ANZ J Surg. 2017;87(12):1040–1043. doi: 10.1111/ans.13522
  25. Golubev IO, Kukin IA, Merculov MV, et al. Free vascularized femoral condyle bone graft in treatment of tubular bone nonunions. N.N. Priorov Journal of Traumatology and Orthopedics. 2019;26(2):19–23. (In Russ). doi: 10.17116/vto201902119
  26. Kukin IA, Golubev IO. Vascularized bone grafts from the distal third of the femur. Present state of the matter. N.N. Priorov Journal of Traumatology and Orthopedics. 2018;25(1):66–71. (In Russ). doi: 10.17816/vto201825166-71
  27. Golubev IO, Sarukhanyan AR, Merkulov MM, et al. Surgery tactic in humeral nonunion. N.N. Priorov Journal of Traumatology and Orthopedics. 2019;26(1):35–41. (In Russ). doi: 10.17116/vto201901135
  28. Cho BC, Shin DP, Byun JS, et al. Monitoring flap for buried free tissue transfer: its importance and reliability. Plast Reconstr Surg. 2002;110(5):1249–1258. doi: 10.1097/01.PRS.0000025286.03909.72
  29. Thorniley MS, Sinclair JS, Barnett NJ, et al. The use of near-infrared spectroscopy for assessing flap viability during reconstructive surgery. Br J Plast Surg. 1998;51(3):218–226. doi: 10.1054/bjps.1997.0145
  30. Chacha PB, Ahmed M, Daruwalla JS. Vascular pedicle graft of the ipsilateral fibula for non-union of the tibia with a large defect. An experimental and clinical study. J Bone Joint Surg Br. 1981;63-B(2):244–253. doi: 10.1302/0301-620X.63B2.7217150
  31. de Boer HH, Wood MB. Bone changes in the vascularised fibular graft. J Bone Joint Surg Br. 1989;71(3):374–378. doi: 10.1302/0301-620X.71B3.2722923
  32. Doi K, Tominaga S, Shibata T. Bone grafts with microvascular anastomoses of vascular pedicles: an experimental study in dogs. J Bone Joint Surg Am. 1977;59(6):809–815.
  33. Guo QF, Xu ZH, Wen SF, et al. Value of a skin island flap as a postoperative predictor of vascularized fibula graft viability in extensive diaphyseal bone defect reconstruction. Orthop Traumatol Surg Res. 2012;98(5):576–582. doi: 10.1016/j.otsr.2012.03.009
  34. Korompilias AV, Paschos NK, Lykissas MG, et al. Recent updates of surgical techniques and applications of free vascularized fibular graft in extremity and trunk reconstruction. Microsurgery. 2011;31(3):171–175. doi: 10.1002/micr.20848
  35. Lasaniano NG, Kanakaris NK, Giannoudis PV. Current management of long-bone large segmental defects. Orthopaedics and Trauma. 2010;24(2):149–163. doi: 10.1016/j.mporth.2009.10.003
  36. Soucacos PN, Korompilias AV, Vekris MD, et al. The free vascularized fibular graft for bridging large skeletal defects of the upper extremity. Microsurgery. 2011;31(3):190–197. doi: 10.1002/micr.20862

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fibular bone combined flap.

Download (132KB)
3. Fig. 2. Fusion in the blood-filled plasty group in patients with and without the use of a signal flap.

Download (79KB)
4. Fig. 3. Radiographs of patient P., 42 years old. Diagnosis: «Pseudarthrosis of the left humerus diaphysis distal third. Condition after multiple surgical interventions» (indicated by arrows).

Download (60KB)
5. Fig. 4. Patient P., 42 years old. Radiographs 6 months after surgery. Signs of consolidation are indicated by arrows.

Download (81KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies