Aspects of vertebral column resection in patients with rigid kyphotic and kyphoscoliotic deformities of different genesis of the thoracolumbar spine: multicenter retrospective observational cohort study

Cover Page

Cite item

Abstract

BACKGROUND: Vertebral column resection (VCR) as a type of spinal osteotomy is characterized by maximum possibilities of three-dimensional correction of various etiologies: congenital, post-tuberculous, iatrogenic (after other interventions on the spine), degenerative, and vertebral spondyloptosis caused by Kümmel’s disease, and primary, and metastatic tumor lesions of the spine. Nowadays, the use of single-level VCR is far beyond its initial purpose.

OBJECTIVE: The study aimed to compare features of VCR for rigid deformities of various etiologies and management of erythrocyte blood products in the perioperative period.

MATERIALS AND METHODS: A multicenter retrospective observational cohort study analyzed data from 53 adult (aged ≥18 years) patients with kyphotic and kyphoscoliotic deformities of the thoracic and lumbar spine, distributed into four comparison groups according to the deformity genesis, namely, impaired spinal development, traumatic genesis, degenerative or idiopathic, and neoplasms of the vertebral bodies. The characteristics of VCR in these patients were compared.

RESULTS: The surgery duration was longer in VCR for spinal neoplasms (p <0.05) than for high-energy burst compression fractures of vertebral bodies and scoliotic deformities (grade IV). On average, this group also had the most cranial osteotomy level among the study groups. VCR for idiopathic scoliotic deformities is characterized by a larger intraoperative blood loss volume than other nosologies, and the differences were statistically significant. In male patients of this group, the hemoglobin level on day 1 after surgery was statistically significantly lower than in those who underwent VCR for compression fractures of the vertebral bodies or impaired vertebral development. During resection of the vertebral column for burst compression fractures of the vertebral bodies, the fixation length was less (p <0.05), with a similar intervention for developmental anomalies, deformities of postoperative genesis, and grade IV idiopathic scoliosis. VCR for grade IV idiopathic scoliosis requires a larger (p <0.05) volume of the reinfused autologous blood than for intervention for acute traumatic pathologies (burst compression fractures of the vertebral bodies).

CONCLUSION: The versatility of clinical tasks for which resection of the spinal column can be performed using the VCR technique also determines the significant heterogeneity of the patients who undergo such treatment. Knowledge of the interventions in various nosologies is very useful in vertebrological practice.

About the authors

Dmitry S. Gorbatyuk

Priorov National Medical Research Center for Traumatology and Orthopedics

Author for correspondence.
Email: naddis@mail.ru
ORCID iD: 0000-0001-8938-2321
SPIN-code: 7686-2123

Traumatologist-Orthopedist

Russian Federation, Moscow

Sergey V. Kolesov

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: dr-kolesov@yandex.ru
ORCID iD: 0000-0001-9657-8584
SPIN-code: 1989-6994

MD, Dr. Sci. (Med.), Traumatologist-Orthopedist, Department Head

Russian Federation, Moscow

Vladimir V. Shvets

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: vshvecv@yandex.ru
ORCID iD: 0000-0001-8884-2410

MD, Dr. Sci. (Med.), Leading Researcher, Traumatologist-Orthopedist

Russian Federation, Moscow

Nataliya S. Morozova

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: morozcito@gmail.com
ORCID iD: 0000-0001-7448-3904
SPIN-code: 4593-3231

MD, Cand. Sci. (Med.), Traumatologist-Orthopedist

Russian Federation, Moscow

Dmitry A. Ptashnikov

Vreden National Medical Research Center for Traumatology and Orthopedics

Email: drptashnikov@yandex.ru
ORCID iD: 0000-0001-5765-3158
SPIN-code: 7678-6542

MD, Dr. Sci. (Med.), Professor, Scientific Head of the Department, Traumatologist-Orthopedist

Russian Federation, Saint Petersburg

Sergey O. Mlyavykh

Privolzhsky Research Medical University

Email: spinedoc@bk.ru
ORCID iD: 0000-0002-6310-4961
SPIN-code: 9803-0387

MD, Dr. Sci. (Med.), Associate Professor

Russian Federation, Nizhny Novgorod

Ivan S. Bratsev

Privolzhsky Research Medical University

Email: spinedoc@bk.ru
ORCID iD: 0000-0002-1630-7053
SPIN-code: 2047-0881

Neurosurgeon

Russian Federation, Nizhny Novgorod

References

  1. MacLennan A. Scoliosis. BMJ. 1922;2(3227):864–866.
  2. Hodgson AR. Correction of fixed spinal curves: a preliminary communication. J Bone Joint Surg Am. 1965;47:1221–1227.
  3. Jain AK. Tuberculosis of the spine: a fresh look at an old disease. J Bone Joint Surg Br. 2010;92(7):905–913. doi: 10.1302/0301-620X.92B7.24668
  4. Rajasekaran S. The natural history of post-tubercular kyphosis in children. Radiological signs which predict late increase in deformity. J Bone Joint Surg Br. 2001;83(7):954–962. doi: 10.1302/0301-620x.83b7.12170
  5. Rajasekaran S. Kyphotic deformity in spinal tuberculosis and its management. Int Orthop. 2012;36(2):359–365. doi: 10.1007/s00264-011-1469-2
  6. Zhou T, Li C, Liu B, et al. Analysis of 17 cases of posterior vertebral column resection in treating thoracolumbar spinal tuberculous angular kyphosis. J Orthop Surg Res. 2015;10:64. doi: 10.1186/s13018-015-0195-7
  7. Hua W, Wu X, Zhang Y, et al. Incidence and risk factors of neurological complications during posterior vertebral column resection to correct severe post-tubercular kyphosis with late-onset neurological deficits: case series and review of the literature. J Orthop Surg Res. 2018;13(1):269. doi: 10.1186/s13018-018-0979-7
  8. Bridwell KH. Decision making regarding Smith-Petersen vs. pedicle subtraction osteotomy vs. vertebral column resection for spinal deformity. Spine (Phila Pa 1976). 2006;31(19 Suppl):S171–S178. doi: 10.1097/01.brs.0000231963.72810.38
  9. Enercan M, Ozturk C, Kahraman S. Osteotomies/spinal column resections in adult deformity. Eur Spine J. 2013;22(2 Suppl):S254–S264. doi: 10.1007/s00586-012-2313-0
  10. Gaines RW. L5 vertebrectomy for the surgical treatment of spondyloptosis: thirty cases in 25 years. Spine (Phila Pa 1976). 2005;30(6 Suppl):S66–S70. doi: 10.1097/01.brs.0000155577.19606.df
  11. Bradford DS, Boachie-Adjei O. One-stage anterior and posterior hemivertebral resection and arthrodesis for congenital scoliosis. Bone Joint Surg Am. 1990;72(4):536–540.
  12. Yang D-L, Yang S-D, Chen Q, et al. The Treatment Evaluation for Osteoporotic Kummell Disease by Modified Posterior Vertebral Column Resection: Minimum of One-Year Follow-Up. Med Sci Monit. 2017;23:606–612. doi: 10.12659/msm.902669
  13. Fan Y, Xia Y, Zhao H, et al. Complications analysis of posterior vertebral column resection in 40 patients with spinal tumors. Exp Ther Med. 2014;8(5):1539–1544. doi: 10.3892/etm.2014.1929
  14. Dreimann M, Hoffmann M, Viezens L, et al. Reducing kyphotic deformity by posterior vertebral column resection with 360° osteosynthesis in metastatic epidural spinal cord compression (MESCC). Eur Spine J. 2017;26(1):113–121. doi: 10.1007/s00586-016-4805-9
  15. Jandial R, Kelly B, Chen MY. Posterior-only approach for lumbar vertebral column resection and expandable cage reconstruction for spinal metastases. J Neurosurg Spine. 2013;19(1):27–33. doi: 10.3171/2013.4.SPINE12344
  16. Liu S, Zhang N, Song Y, et al. Radiologic comparison of posterior release, internal distraction, final PSO and spinal fusion with one-stage posterior vertebral column resection for multi-level severe congenital scoliosis. BMC Musculoskelet Disord. 2017;18(1):270. doi: 10.1186/s12891-017-1627-9
  17. Hamzaoglu A, Elsadig M, Karadereler S, et al. Single-Stage Posterior Vertebral Column Resection With Circumferential Reconstruction for Thoracic / Thoracolumbar Burst Fractures With or Without Neurological Deficit: Clinical Neurological and Radiological Outcomes. Global Spine J. 2022;12(5):801–811. doi: 10.1177/2192568220964453
  18. Zhang Y, Tao L, Hai Y, et al. One-Stage Posterior Multiple-Level Asymmetrical Ponte Osteotomies Versus Single-Level Posterior Vertebral Column Resection for Severe and Rigid Adult Idiopathic Scoliosis. Spine (Phila Pa 1976). 2019;44(20):E1196–E1205. doi: 10.1097/BRS.0000000000003101
  19. Zhou C, Liu L, Song Y, et al. Comparison of anterior and posterior vertebral column resection versus anterior and posterior spinal fusion for severe and rigid scoliosis. Spine J. 2018;18(6):948–953. doi: 10.1016/j.spinee.2017.10.001

Copyright (c) 2023 Gorbatyuk D.S., Kolesov S.V., Shvets V.V., Morozova N.S., Ptashnikov D.A., Mlyavykh S.O., Bratsev I.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies