A Comparative Study of Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome Models in Immature and Prepubertal Female Rats

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Polycystic ovary syndrome (PCOS), one of the most common endocrine disorders in women, leads to reduced reproductive potential and infertility. Rodent models, including those induced by dehydroepiandrosterone (DHEA), are used to study PCOS. However, they have not been sufficiently studied, including in terms of ovulation stimulation in PCOS rats by luteinizing hormone (LH) agonists, and this complicates their use in developing approaches for the treatment of PCOS. The aim of the work was to comparatively study and characterize the morphological and biochemical parameters in animals with two most commonly used models of PCOS, induced by six-week treatment of immature (23–25 days) and three-week treatment of prepubertal (45–47 days) female rats with DHEA, and to evaluate the effectiveness of ovulation stimulation in PCOS rats using TP03, a low-molecular-weight LH receptor agonist developed by us. Six-week treatment of immature female rats with DHEA resulted in the development of polycystic ovary morphology, decreased blood progesterone levels, and decreased expression of ovarian genes encoding key steroidogenic proteins (CYP11A1, CYP17A1) and the metalloproteinase ADAMTS-1, a marker of ovulation. Treatment with TP03 increased progesterone levels, enhanced expression of the Cyp11a1, Cyp17a1, and Adamts-1 genes, and led to the formation of corpora lutea (CL), but a significant proportion of these were luteinized unruptured follicles. Three-week treatment of prepubertal female rats with DHEA also resulted in the characteristic features of PCOS, but had a lesser effect on Adamts-1 gene expression and did not induce the formation of defective CL upon stimulation with TP03. In this case, two subgroups were identified among PCOS rats – those with relatively low and those with high progesterone levels. They differed significantly in Cyp17a1 gene expression and in the efficiency of new cycle adipose tissue formation after TP03 treatment. Thus, the longer-term DHEA-induced PCOS model in immature female rats is well suited for studying functional impairments in severe forms of PCOS, while the PCOS model generated in prepubertal rats by three-week DHEA treatment is more suitable for studying moderate forms of PCOS and optimizing the choice of ovulation stimulants effective in this disease.

作者简介

A. Pechalnova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Saint Petersburg, Russia

K. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: derkatch_k@list.ru
Saint Petersburg, Russia

I. Morina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Saint Petersburg, Russia

I. Zorina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Saint Petersburg, Russia

L. Bayunova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Saint Petersburg, Russia

I. Romanova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Saint Petersburg, Russia

E. Chernenko

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Saint Petersburg, Russia

A. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Saint Petersburg, Russia

参考

  1. Teede H, Deeks A, Moran L (2010) Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med 8: 41. https://doi.org/10.1186/1741-7015-8-41
  2. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ (2010) The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 25(2): 544–551. https://doi.org/10.1093/humrep/dep399
  3. Teede HJ, Tay CT, Laven JJE, Dokras A, Moran LJ, Piltonen TT, Costello MF, Boivin J, Redman LM, Boyle JA, Norman RJ, Mousa A, Joham AE (2023) Recommendations From the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. J Clin Endocrinol Metab 108(10): 2447–2469. https://doi.org/10.1210/clinem/dgad463
  4. Hart R, Hickey M, Franks S (2004) Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 18(5): 671–683. https://doi.org/10.1016/j.bpobgyn.2004.05.001
  5. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R (2016) Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril 106(1): 6–15. https://doi.org/10.1016/j.fertnstert.2016.05.003
  6. Azziz R (2018) Polycystic Ovary Syndrome. Obstet Gynecol 132(2): 321–336. https://doi.org/10.1097/AOG.0000000000002698
  7. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman RJ & International PCOS Network (2018) Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 33(9): 1602–1618. https://doi.org/10.1093/humrep/dey256
  8. Taylor AE, McCourt B, Martin KA, Anderson EJ, Adams JM, Schoenfeld D, Hall JE (1997) Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab 82(7): 2248–2256. https://doi.org/10.1210/jcem.82.7.4105
  9. Rosenfield RL, Ehrmann DA (2016) The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 37(5): 467–520. https://doi.org/10.1210/er.2015-1104
  10. Alexiou E, Hatziagelaki E, Pergialiotis V, Chrelias C, Kassanos D, Siristatidis C, Kyrkou G, Kreatsa M, Trakakis E (2017) Hyperandrogenemia in women with polycystic ovary syndrome: prevalence, characteristics and association with body mass index. Horm Mol Biol Clin Investig 29(3): 105–111. https://doi.org/10.1515/hmbci-2016-0047
  11. Ding H, Zhang J, Zhang F, Zhang S, Chen X, Liang W, Xie Q (2021) Resistance to the Insulin and Elevated Level of Androgen: A Major Cause of Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 12: 741764. https://doi.org/10.3389/fendo.2021.741764
  12. Bizuneh AD, Joham AE, Teede H, Mousa A, Earnest A, Hawley JM, Smith L, Azziz R, Arlt W, Tay CT (2025) Evaluating the diagnostic accuracy of androgen measurement in polycystic ovary syndrome: a systematic review and diagnostic meta-analysis to inform evidence-based guidelines. Hum Reprod Update 31(1): 48–63. https://doi.org/10.1093/humupd/dmae028
  13. Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, Beaumont RN, Wittemans L, Martin S, Busch AS, Erzurumluoglu AM, Hollis B, O'Mara TA; Endometrial Cancer Association Consortium; McCarthy MI, Langenberg C, Easton DF, Wareham NJ, Burgess S, Murray A, Ong KK, Frayling TM, Perry JRB (2020) Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med 26(2): 252–258. https://doi.org/10.1038/s41591-020-0751-5
  14. Paixão L, Ramos RB, Lavarda A, Morsh DM, Spritzer PM (2017) Animal models of hyperandrogenism and ovarian morphology changes as features of polycystic ovary syndrome: a systematic review. Reprod Biol Endocrinol 15(1): 12. https://doi.org/10.1186/s12958-017-0231-z
  15. Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH (2020) Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 41(4): bnaa010. https://doi.org/10.1210/endrev/bnaa010
  16. Poojary PS, Nayak G, Panchanan G, Rao A, Kundapur SD, Kalthur SG, Mutalik S, Adiga SK, Zhao Y, Bakkum-Gamez J, Chang AY, DeStephano C, Sherman M, Kannan N, Kalthur G (2022) Distinctions in PCOS Induced by Letrozole Vs Dehydroepiandrosterone With High-fat Diet in Mouse Model. Endocrinology 163(9): bqac097. https://doi.org/10.1210/endocr/bqac097
  17. Seow KM, Ting CH, Huang SW, Ho LT, Juan CC (2018) The use of dehydroepiandrosteronetreated rats is not a good animal model for the study of metabolic abnormalities in polycystic ovary syndrome. Taiwan J Obstet Gynecol 57(5): 696–704. https://doi.org/10.1016/j.tjog.2018.08.015
  18. Ikeda K, Baba T, Morishita M, Honnma H, Endo T, Kiya T, Saito T (2014) Long-term treatment with dehydroepiandrosterone may lead to follicular atresia through interaction with anti-Mullerian hormone. J Ovarian Res 7: 46. https://doi.org/10.1186/1757-2215-7-46
  19. Chen MJ, Chou CH, Chen SU, Yang WS, Yang YS, Ho HN (2015) The effect of androgens on ovarian follicle maturation: Dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression. Sci Rep 5: 18319. https://doi.org/10.1038/srep18319
  20. Zhou DN, Li SJ, Ding JL, Yin TL, Yang J, Ye H (2018) MIF May Participate in Pathogenesis of Polycystic Ovary Syndrome in Rats through MAPK Signalling Pathway. Curr Med Sci 38(5): 853–860. https://doi.org/10.1007/s11596-018-1953-7
  21. Olaniyan OT, Femi A, Iliya G, Ayobami D, Godam E, Olugbenga E, Bamidele O, Chand Mali P (2019) Vitamin C suppresses ovarian pathophysiology in experimental polycystic ovarian syndrome. Pathophysiology 26(3-4): 331–341. https://doi.org/10.1016/j.pathophys.2019.08.003
  22. Kim EJ, Jang M, Choi JH, Park KS, Cho IH (2018) An Improved Dehydroepiandrosterone-Induced Rat Model of Polycystic Ovary Syndrome (PCOS): Post-pubertal Improve PCOS's Features. Front Endocrinol (Lausanne) 9: 735. https://doi.org/10.3389/fendo.2018.00735
  23. Gharanjik F, Shojaeifard MB, Karbalaei N, Nemati M (2022) The Effect of Hydroalcoholic Calendula Officinalis Extract on Androgen-Induced Polycystic Ovary Syndrome Model in Female Rat. Biomed Res Int 2022: 7402598. https://doi.org/10.1155/2022/7402598
  24. Singh P, Srivastava RK, Krishna A (2016) Effects of gonadotropin-releasing hormone agonist and antagonist on ovarian activity in a mouse model for polycystic ovary. J Steroid Biochem Mol Biol 163: 35–44. https://doi.org/10.1016/j.jsbmb.2016.03.034
  25. Bakhtyukov AA, Derkach KV, Fokina EA, Lebedev IA, Sorokoumov VN, Bayunova LV, Shpakov AO (2023) Effect of Different Luteinizing Hormone Receptor Agonists on Ovarian Steroidogenesis in Mature Female Rats. J Evol Biochem Physiol 59(1): 57–68. https://doi.org/10.1134/S0022093023010052
  26. Derkach KV, Lebedev IA, Morina IY, Bakhtyukov AA, Pechalnova AS, Sorokoumov VN, Kuznetsova VS, Romanova IV, Shpakov AO (2023) Comparison of Steroidogenic and OvulationInducing Effects of Orthosteric and Allosteric Agonists of Luteinizing Hormone/Chorionic Gonadotropin Receptor in Immature Female Rats. Int J Mol Sci 24(23): 16618. https://doi.org/10.3390/ijms242316618
  27. Derkach KV, Bakhtyukov AA, Sorokoumov VN, Didenko EA, Romanova IV, Morina IYu, Lebedev IA, Bayunova LV, Shpakov AO (2024) Dynamics of gonadotropin and thienopyrimidine derivative TP03 effects on ovulation and ovarian steroidogenesis in Follimag-stimulated immature female rats. Rev Clin Pharmacol Drug Therapy 22(1): 53–65. https://doi.org/10.17816/RCF622883
  28. van de Lagemaat R, Timmers CM, Kelder J, van Koppen C, Mosselman S, Hanssen RG (2009) Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod 24(3): 640–648. https://doi.org/10.1093/humrep/den412
  29. Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO (2021) The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 23(1): 198. https://doi.org/10.3390/ijms23010198
  30. He Y, Li X, Li Y, Kuai D, Zhang H, Wang Y, Tian W (2024) Dehydroepiandrosterone with a high-fat diet treatment at inducing polycystic ovary syndrome in rat model. Steroids 206: 109424. https://doi.org/10.1016/j.steroids.2024.109424
  31. Cora MC, Kooistra L, Travlos G (2015) Vaginal Cytology of the Laboratory Rat and Mouse: Review and Criteria for the Staging of the Estrous Cycle Using Stained Vaginal Smears. Toxicol Pathol 43(6): 776–793. https://doi.org/10.1177/0192623315570339
  32. Ajayi AF, Akhigbe RE (2020) Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract 6: 5. https://doi.org/10.1186/s40738-020-00074-3
  33. Shih MC, Chiu YN, Hu MC, Guo IC, Chung BC (2011) Regulation of steroid production: analysis of Cyp11a1 promoter. Mol Cell Endocrinol 336(1-2): 80–84. https://doi.org/10.1016/j.mce.2010.12.017
  34. Heidarzadehpilehrood R, Pirhoushiaran M, Abdollahzadeh R, Binti Osman M, Sakinah M, Nordin N, Abdul Hamid H (2022) A Review on CYP11A1, CYP17A1, and CYP19A1 Polymorphism Studies: Candidate Susceptibility Genes for Polycystic Ovary Syndrome (PCOS) and Infertility. Genes (Basel) 13(2): 302. https://doi.org/10.3390/genes13020302
  35. Xu X, Hu K, Shi H, Yu Y, Xu J, Sun Y (2021) The single-nucleotide polymorphism rs743572 of CYP17A1 shows significant association with polycystic ovary syndrome: a meta-analysis. Reprod Biomed Online 43(5): 941–951. https://doi.org/10.1016/j.rbmo.2021.06.012
  36. Pusalkar M, Meherji P, Gokral J, Chinnaraj S, Maitra A (2009) CYP11A1 and CYP17 promoter polymorphisms associate with hyperandrogenemia in polycystic ovary syndrome. Fertil Steril 92(2): 653–659. https://doi.org/10.1016/j.fertnstert.2008.07.016
  37. Rezgoun ML, El Khour D, Bendaoud H, Chellat D (2023) CYP17A1 (rs74357) polymorphism and polycystic ovary syndrome risk: a systemic review and meta-analysis. Acta Biomed 94(4): e2023167. https://doi.org/10.23750/abm.v94i4.14229
  38. Lazzaretti C, Simoni M, Casarini L, Paradiso E (2023) Allosteric modulation of gonadotropin receptors. Front Endocrinol (Lausanne) 14: 1179079. https://doi.org/10.3389/fendo.2023.1179079
  39. Shpakov AO (2024) Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. Front Biosci (Landmark Ed) 29(9): 313. https://doi.org/10.31083/j.fbl2909313
  40. Sun B, Ma Y, Li L, Hu L, Wang F, Zhang Y, Dai S, Sun Y (2021) Factors Associated with Ovarian Hyperstimulation Syndrome (OHSS) Severity in Women With Polycystic Ovary Syndrome Undergoing IVF/ICSI. Front Endocrinol (Lausanne) 11: 615957. https://doi.org/10.3389/fendo.2020.615957
  41. Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284(46): 31493–31497. https://doi.org/10.1074/jbc.R109.052340
  42. Brown HM, Dunning KR, Robker RL, Boerboom D, Pritchard M, Lane M, Russell DL (2010) ADAMTS1 cleavage of versican mediates essential structural remodeling of the ovarian follicle and cumulus-oocyte matrix during ovulation in mice. Biol Reprod 83(4): 549–557. https://doi.org/10.1095/biolreprod.110.084434
  43. GohariTaban S, Amiri I, Soleimani Asl S, Saidijam M, Yavangi M, Khanlarzadeh E, Mohammadpour N, Shabab N, Artimani T (2019) Abnormal expressions of ADAMTS-1, ADAMTS-9 and progesterone receptors are associated with lower oocyte maturation in women with polycystic ovary syndrome. Arch Gynecol Obstet 299(1): 277–286. https://doi.org/10.1007/s00404-018-4967-2
  44. Ma Y, Jin J, Tong X, Yang W, Ren P, Dai Y, Pan Y, Zhang Y, Zhang S (2020) ADAMTS1 and HSPG2 mRNA levels in cumulus cells are related to human oocyte quality and controlled ovarian hyperstimulation outcomes. J Assist Reprod Genet 37(3): 657–667. https://doi.org/10.1007/s10815-019-01659-8
  45. Shi Y, Shi Y, He G, Wang G, Liu H, Shao X (2022) Association of ADAMTS proteoglycanases downregulation with IVF-ET outcomes in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 20(1): 169. https://doi.org/10.1186/s12958-022-01035-9
  46. Liu Y, Zhu J, Yang Y, Chen Z, Zhou Y, Fei W, Zhang X, Zheng Y (2025) Extracellular matrix dysregulation in PCOS: pathogenesis, therapeutic strategies, and innovative technologies. J Biol Eng 19(1): 61. https://doi.org/10.1186/s13036-025-00533-9
  47. Arvis P, Lehert P, Guivarc'h-Levêque A (2019) Both high and low HCG day progesterone concentrations negatively affect live birth rates in IVF/ICSI cycles. Reprod Biomed Online 39(5): 852–859. https://doi.org/10.1016/j.rbmo.2019.07.001

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».