The Effect of Maternal Methyl-Enriched Diet on the Number of Dopaminergic Neurons in the Ventral Tegmental Area in Adult Offspring of WAG/Rij Rats

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

WAG/Rij rats are genetic model of absence epilepsy with comorbid depression. Pathologic phenotype in WAG/Rij rats was shown to be associated with reduced dopamine (DA) tone within the mesolimbic DAergic brain system. Previously, it was found that maternal methyl-enriched diet (MED) in the perinatal period increases DA content in the mesolimbic DAergic brain system and reduces absence seizures and comorbid depression in adult offspring of WAG/Rij rats. Ventral tegmental area (VTA), containing DA cells bodies, is a main source of the mesolimbic DA synthesis. The aim of this study was to test the hypothesis that increases in the mesolimbic DAergic tone induced by maternal MED in offspring may be due to an increase in the number of DA-synthesizing neurons in the VTA. Immunohistochemistry for thyrosine hydroxylase (TH) was used to assess the number of TH-immunopositive cells in adult offspring of WAG/Rij rats born to mothers fed control diet or MED and subjected or not subjected to behavioral testing for 2 consecutive days in the light-dark choice, open field, elevated plus maze and forced swimming tests. One hour after the forced swimming test animals were anesthetized. Brains were fixed using transcardial perfusion. The number of DAergic neurons was determined by the number of TH-immunopositive cells on brain slices at the level of VTA. The number of TH-immunopositive cells was counted in left and right hemispheres separately. A significant effect of maternal MED on the number of cells in the VTA expressing TH has been established. Adult WAG/Rij offspring born to mothers fed MED had an increased number of TH-immunopositive cells as compared with the offspring born to mothers fed control diet. Moreover, in WAG/Rij offspring born to mothers fed MED, the number of TH-immunopositive cells was greater in animals subjected to behavioral testing compared with animals not subjected to behavioral testing. The effects of maternal MED and behavioral testing on the number of TH-immunopositive cells in the VTA were equally expressed in the left and right hemispheres of the brain. Results suggest that maternal MED in the perinatal period can affect the developing mesolimbic DAergic brain system, promoting the generation and/or maintenance of DA neurons in the VTA, and thereby prevent the occurrence of genetic absence epilepsy and comorbid depression in the offspring of WAG/Rij rats.

作者简介

E. Fedosova

Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ekaterina5fedosova@rambler.ru
Russia, Moscow

N. Loginova

Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences

Email: ekaterina5fedosova@rambler.ru
Russia, Moscow

K. Sarkisova

Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences

Email: ekaterina5fedosova@rambler.ru
Russia, Moscow

参考

  1. Саркисова КЮ, Куликов МА (2000) Новая экспериментальная модель депрессии: крысы линии WAG/Rij, генетически предрасположенные к absence-эпилепсии. ДАН 374(5): 706–709. [Sarkisova KY, Kulikov MA (2000) A new experimental model of depression: WAG/Rij rats genetically predisposed to absence epilepsy. Dokl Biol Sci 374(5): 706–709. (In Russ)].
  2. Sarkisova KY, Midzyanovskaya IS, Kulikov MA (2003) Depressive-like behavioral alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy. Behav Brain Res 144: 211–226. https://doi.org/10.1016/s0166-4328(03)00090-1
  3. Sarkisova K, van Luijtelaar G (2011) The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(4): 854–876. https://doi.org/10.1016/j.pnpbp.2010.11.010
  4. Deransart C, Riban V, Lê B, Marescaux C, Depaulis A (2000) Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 100(2): 335–344. https://doi.org/10.1016/s0306-4522(00)00266-9
  5. Tugba EK, Medine GIO, Ozlem A, Deniz K, Filiz OY (2022) Prolongation of absence seizures and changes in serotonergic and dopaminergic neurotransmission by nigrostriatal pathway degeneration in genetic absence epilepsy rats. Pharmacol Biochem Behav 213: 173317. https://doi.org/10.1016/j.pbb.2021.173317
  6. Sarkisova KYu, Kulikov MA, Midzianovskaia IS, Folomkina AA (2007) Dopamine-dependent character of depressive-like behavior in WAG/Rij rats with genetic absence epilepsy. Zh Vyssh Nerv Deiat Im IP Pavlova 57(1): 91–102. https://doi.org/10.1007/s11055-008-0017-z
  7. Sarkisova KYu, Kulikov MA, Kudrin VS, Narkevich VB, Midzianovskaia IS, Biriukova LM, Folomkina AA, Basian AS (2014) Neurochemical mechanisms of depression-like behavior in WAG/Rij rats. Zh Vyssh Nerv Deiat Im I P Pavlova 63(3): 303–315. https://doi.org/10.7868/s0044467713030106
  8. Sarkisova KJu, Kulikov MA, Kudrin VS, Midzyanovskaya IS, Birioukova LM (2014) Age-related changes in behavior, in monoamines and their metabolites content, and in density of D1 and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology. Zh Vyssh Nerv Deiat Im I P Pavlova 64(6): 668–685. https://doi.org/10.7868/S0044467714060094
  9. Sarkisova KY, Gabova AV, Kulikov MA, Fedosova EA, Shatskova AB, Morosov AA (2017) Rearing by foster Wistar mother with high level of maternal care counteracts the development of genetic absence epilepsy and comorbid depression in WAG/Rij rats. Dokl Biol Sci 473(1): 39–42. https://doi.org/10.1134/S0012496617020077
  10. Sarkisova KY, Gabova AV (2018) Maternal care exerts disease-modifying effects on genetic absence epilepsy and comorbid depression. Genes Brain Behav 17(7): e12477. https://doi.org/10.1111/gbb.12477
  11. Sarkisova K, van Luijtelaar G (2022) The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 13: 436–468. https://doi.org/10.1016/j.ibneur.2022.10.012
  12. Sarkisova KY, Gabova AV, Fedosova EA, Shatskova AB (2020) Gender-Dependent Effect of Maternal Methyl-Enriched Diet on the Expression of Genetic Absence Epilepsy and Comorbid Depression in Adult Offspring of WAG/Rij Rats. Dokl Biol Sci 494(1): 244–247. https://doi.org/10.1134/S0012496620050075
  13. Sarkisova KY, Fedosova EA, Shatskova AB, Rudenok MM, Stanishevskaya VA, Slominsky PA (2023) Maternal Methyl-Enriched Diet Increases DNMT1, HCN1, and TH Gene Expression and Suppresses Absence Seizures and Comorbid Depression in Offspring of WAG/Rij Rats. Diagnostics (Basel) 13(3): 398. https://doi.org/10.3390/diagnostics13030398
  14. Van den Veyver IB (2002) Genetic effects of methylation diets. Annu Rev Nutr 22: 255–282. https://doi.org/10.1146/annurev.nutr.22.010402.102932
  15. Herbeck YE, Gulevich RG, Amelkina OA, Plyusnina IZ, Oskina IN (2010) Conserved methylation of the glucocorticoid receptor gene exon 1(7) promoter in rats subjected to a maternal methyl-supplemented diet. Int J Dev Neurosci 28(1): 9–12. https://doi.org/10.1016/j.ijdevneu.2009.10.004
  16. Poletaeva II, Surina NM, Ashapkin VV, Fedotova IB, Merzalov IB, Perepelkina OV, Pavlova GV (2014) Maternal methyl-enriched diet in rat reduced the audiogenic seizure proneness in progeny. Pharmacol Biochem Behav 127: 21–26. https://doi.org/10.1016/j.pbb.2014.09.018
  17. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 Suppl: 245–254. https://doi.org/10.1038/ng1089
  18. Ванюшин БФ (2013) Эпигенетика сегодня и завтра. Вавиловск журн генетики и селекции 17 (4/2): 805–832. [Vanyushin BF (2013) Epigenetics today and tomorrow. Vavilovsk zhurn genetiki i selektsii 17 (4/2): 805–832. (In Russ)].
  19. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(1): 47–58. https://doi.org/10.1093/hmg/ddi114
  20. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine Hydroxylase. The Initial Step In Norepinephrine Biosynthesis. J Biol Chem 239: 2910–2917.
  21. Tekin I, Roskoski RJr, Carkaci-Salli N, Vrana KE (2014) Complex molecular regulation of tyrosine hydroxylase. J Neur Transm 121(12): 1451–1481. https://doi.org/10.1007/s00702-014-1238-7
  22. Sarkisova KY, Fedosova EA, Shatskova AB, Narkevich VB, Kudrin VS (2022) Maternal Methyl-Enriched Diet Increases Dopaminergic Tone of the Mesolimbic Brain System in Adult Offspring of WAG/Rij Rats. Dokl Biol Sci 506(1): 145–149. https://doi.org/10.1134/S001249662205012X
  23. Trutti AC, Mulder MJ, Hommel B, Forstmann BU (2019) Functional neuroanatomical review of the ventral tegmental area. Neuroimage 191: 258–268. https://doi.org/10.1016/j.neuroimage.2019.01.062
  24. Margolis EB, Coker AR, Driscoll JR, Lemaître AI, Fields HL (2010) Reliability in the identification of midbrain dopamine neurons. PLoS One 5(12): e15222. https://doi.org/10.1371/journal.pone.0015222
  25. Lapshina KV, Abramova YuYu, Guzeev MA, Ekimova IV (2022) TGN-020, Inhibitor of the Water Channel Aquaporin-4, Accelerates Nigrostriatal Neurodegeneration in the Rat Model of Parkinson’s Disease. J Evol Biochem Physiol 58(6): 2035–2047. https://doi.org/10.31857/S0869813922120081
  26. Fedosova EA, Shatskova AB, Sarkisova KY (2021) Ethosuximide increases exploratory motivation and improves episodic memory in the novel object recognition test in WAG/Rij rats with genetic absence epilepsy. Neurosci Behav Physiol 51(4): 501–512. https://doi.org/10.1007/s11055-021-01097-z
  27. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Elevated Plus Maze Test for Measuring Anxiety-Like Behavior in Rodents. Methods Mol Biol 1916: 69–74. https://doi.org/10.1007/978-1-4939-8994-2_4
  28. Ahmadi M, Dufour JP, Seifritz E, Mirnajafi-Zadeh J, Saab BJ (2017) The PTZ kindling mouse model of epilepsy exhibits exploratory drive deficits and aberrant activity amongst VTA dopamine neurons in both familiar and novel space. Behav Brain Res 330: 1–7. https://doi.org/10.1016/j.bbr.2017.05.025
  29. Peña CJ, Neugut YD, Calarco CA, Champagne FA (2014) Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. Eur J Neurosci 39(6): 946–956. https://doi.org/10.1111/ejn.12479
  30. Tomas D, Prijanto AH, Burrows EL, Hannan AJ, Horne MK, Aumann TD (2015) Environmental modulations of the number of midbrain dopamine neurons in adult mice. J Vis Exp 95: 52329. https://doi.org/10.3791/52329
  31. Sukhareva EV, Kalinina TS, Bulygina VV, Dygalo NN (2016) Tyrosine hydroxylase of the brain and its regulation by glucocorticoids. Vavilov J Genet Breed 20(2): 212–219. https://doi.org/10.18699/VJ16.156
  32. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, Kim SY, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K (2013) Dopamine neurons modulate neural encoding and expression of depression-related behavior. Nature 493(7433): 537–541. https://doi.org/10.1038/nature11740
  33. Barrot M, Sesack SR, Georges F, Pistis M, Hong S (2012) Braking Dopamine Systems: A New GABA Master Structure for Mesolimbic and Nigrostriatal Functions. J Neurosci 32(41): 14094–14101. https://doi.org/10.1523/JNEUROSCI.3370-12.2012
  34. Root DH, Mejias-Aponte CA, Zhang S, Wang HL, Hoffman AF, Lupica CR, Morales M (2014) Single rodent mesohabenular axons release glutamate and GABA. Nat Neurosci 17(11): 1543–1551. https://doi.org/10.1038/nn.3823
  35. Rollo CD (2009) Dopamine and aging: intersecting facets. Neurochem Res 34(4): 601–629. https://doi.org/10.1007/s11064-008-9858-7
  36. Gabova AV, Sarkisova KYu, Fedosova EA, Shatskova AB, Morozov AA (2020) Developmental Changes in Peak-Wave Discharges in WAG/Rij Rats with Genetic Absence Epilepsy. Neurosci Behav Physi 50: 245–252. https://doi.org/10.1007/s11055-019-00893-y
  37. Fedosova EA, Sarkisova KYu, Kudrin VS, Narkevich VB, Bazyan AS (2015) Behavioral and Neurochemical Characteristics of Two Months Old WAG/Rij Rats with Genetic Absence Epilepsy. Int J Clini Exp Neurol 3(2): 32–44. https://doi.org/10.12691/ijcen-3-2-2
  38. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2): 155–175. https://doi.org/10.1016/j.pharmthera.2013.01.004
  39. Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ, Velasco I (2017) The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells. Front Mol Neurosci 10: 258. https://doi.org/10.3389/fnmol.2017.00258
  40. Roussa E, Oehlke O, Rahhal B, Heermann S, Heidrich S, Wiehle M, Krieglstein K (2008) Transforming growth factor beta cooperates with persephin for dopaminergic phenotype induction. Stem Cells 26(7): 1683–1694. https://doi.org/10.1634/stemcells.2007-0805
  41. Sariola H, Saarma M (2003) Novel functions and signaling pathways for GDNF. J Cell Sci 116(19): 3855–3862. https://doi.org/10.1242/jcs.00786
  42. Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, Muramatsu S, Sumi-Ichinose C, Nomura T, Metzger D, Chambon P, Lindqvist E, Larsson NG, Olson L, Björklund A, Ichinose H, Perlmann T (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29(50): 15923–15932. https://doi.org/10.1523/JNEUROSCI.3910-09.2009

补充文件

附件文件
动作
1. JATS XML
2.

下载 (131KB)
3.

下载 (2MB)
4.

下载 (124KB)
5.

下载 (56KB)

版权所有 © Е.А. Федосова, Н.А. Логинова, К.Ю. Саркисова, 2023

##common.cookie##