The Role of the Superoxide Radical in the Regulation of the KV-Channels Function in the Coronary Vessels Following Posttraumatic Stress Disorder

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The purpose of the research was to study the contribution of the superoxide radical (\({\text{O}}_{2}^{{\centerdot - }}\)) to the mechanisms of the coronary KV-channels functional activity impairment in rats with posttraumatic stress disorder (PTSD). The study was performed on 117 outbred white male rats (Rattus, Muridae weighing 210–240 g). To reproduce the experimental analogue of PTSD, the modified model of “a predator presence imitation” was applied (contact with cats’ excrements for 10 days, 15 minutes daily). The PTSD development was confirmed by behavioral changes of affected animals in the “Open Field” test. The coronary vessels’ tone was studied on the isolated by the Langendorf’s method isotonically contracted hearts, which were perfused under constant flow with Krebs–Henseleit solution. The contribution of \({\text{O}}_{2}^{{\centerdot - }}\) to the coronary vascular tone regulation was studied by infusion of the superoxide radical “scavenger” Tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid) in the perfusion solution. The functional activity of KV-channels was assessed by the degree of increase in the coronary perfusion pressure (CPP) in response to 4-aminopyridine (4-AP), a blocker of KV-channels. To elucidate the role of \({\text{O}}_{2}^{{\centerdot - }}\) in the KV‑channels functional activity of coronary vessels, Tiron and 4-AP were infused in the perfusion solution. The concentration of diene conjugates (DCs), malondialdehyde (MDA), C‑reactive protein (C-RP) and interleukin 1β (IL-1β) as well as catalase (CAT) and superoxide dismutase (SOD) activity were detected in the blood serum of experimental animals. The CPP in the isolated rats’ hearts after PTSD was 30% lower at coronary flow rate 10 mL/min compared to the control group. Under the influence of 4-AP, CPP increased by 70% and by 24% in the “Control” and “PTSD” groups, respectively. Under influence of Tiron, the CPP in the “PTSD” group at coronary flow rate 10 mL/min was 52% lower than in the control. In the “PTSD + Tiron + 4-AP” group the CPP augmentation (71.5%) was comparable to that in the hearts of the “Control” group after 4-AP exposure. The IL-1β, C-RP, DCs and MDA concentration in the blood serum of rats with PTSD was 3, 1.6, 3.3 and 3.6 times higher than in the control rats’ blood serum, while SOD and CAT activity was by 27 and 59% lower, compared to control, respectively. In the course of the investigation, it was found that \({\text{O}}_{2}^{{\centerdot - }}\) overproduction due to oxidative stress might be an important mechanism of a poststressor “channelopathy”, which is characterized by the decreased functional activity of the KV-channels of coronary vessels following PTSD.

作者简介

S. Lazuko

Vitebsk State Order of Friendship of Peoples Medical University

编辑信件的主要联系方式.
Email: lazuko71@mail.ru
Belarus, Vitebsk

L. Belyaeva

Vitebsk State Order of Friendship of Peoples Medical University

Email: lazuko71@mail.ru
Belarus, Vitebsk

O. Kuzhel

Vitebsk State Order of Friendship of Peoples Medical University

Email: lazuko71@mail.ru
Belarus, Vitebsk

参考

  1. Richter-Levin G, Stork O, Schmidt MV (2019) Animal models of PTSD: a challenge to be met. Mol Psychiatry 24:1135–1156. https://doi.org/10.1038/s41380-018-0272-5
  2. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57(4): 473–508. https://doi.org/10.1124/pr.57.4.10
  3. González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R (2012) K(+) channels: function-structural overview. Comprehens Physiol 2: 2087–2149. https://doi.org/10.1002/cphy.c110047
  4. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268: 799–822. https://doi.org/10.1152/ajpcell.1995.268.4.C799
  5. Park SW, Noh HJ, Sung DJ, Kim JG, Kim JM, Ryu SY, Kang K, Kim B, Bae YM, Cho H (2015) Hydrogen peroxide induces vasorelaxation by enhancing 4-aminopyridine-sensitive Kv currents through S-glutathionylation. Pflug Arch 467: 285–297.https://doi.org/10.1007/s00424-014-1513-3
  6. Jerng HH, Dougherty K, Covarrubias M, Pfaffinger PJ (2009) A novel N-terminal motif of dipeptidyl peptidase-like proteins produces rapid inactivation of KV4.2 channels by a pore-blocking mechanism. Channels (Austin) 3(6): 448–461. https://doi.org/10.4161/chan.3.6.10216
  7. Gamper N, Zaika O, Li Y, Martin P, Hernandez CC, Perez MR, Wang AY, Jaffe DB, Shapiro MS (2006) Oxidative modification of M-type K(+) channels as a mechanism of cytoprotective neuronal silencing. EMBO J 25(20): 4996–5004. https://doi.org/10.1038/sj.emboj.7601374
  8. Tykocki NR, Boerman EM, Jackson WF (2017) Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 7(2): 485–581. https://doi.org/10.1002/cphy.c160011
  9. Nieves-Cintrón M, Syed AU, Nystoriak MA, Navedo MF (2018) Regulation of voltage-gated potassium channels in vascular smooth muscle during hypertension and metabolic disorders. Microcirculation 25(1): https://doi.org/10.1111/micc.12423.10.1111/micc.12423
  10. López Alarcón MM, Rodríguez de Yurre A, Felice JI, Medei E, Escobar AL (2019) Phase 1 repolarization rate defines Ca2+ dynamics and contractility on intact mouse hearts. J Gen Physiol 151(6): 771–785. https://doi.org/10.1085/jgp.201812269
  11. Lazuko SS, Kuzhel OP, Belyaeva LE, Manukhina EB, Downey HF, Tseilikman OB, Komelkova MV, Tseilikman VE (2018) Posttraumatic Stress Disorder Disturbs Coronary Tone and Its Regulatory Mechanisms. Cell Mol Neurobiol 38(1): 209–217. https://doi.org/10.1007/s10571-018-0619-0
  12. Verbitsky A, Dopfel D, Zhang N (2020) Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 10(1): 132. https://doi.org/10.1038/s41398-020-0806-x
  13. Tseilikman OB, Lapshin MS, Komelkova MV, Kondashevskaya MV, Dremencov EV, Manukhina EB, Downey H Fred, Lazuko SS, Kuzhel OP, Tseylikman VE, Kozochkin DA (2017) Adrenal insufficiency in rats after prolonged exposure to the predator cue: A new animal model of post-traumatic stress disorder. Psychoneuroendocrinology 83: 83. https://doi.org/10.1016/j.psyneuen.2017.07.460
  14. Солодков АП, Дорошенко АС, Шебеко ВИ, Щербинин ИЮ (2005) Эндотелий, ауторегуляция коронарных сосудов и стресс. Вестн Фонда фундамент исследов 1: 79–94. [Solodkov AP, Doroshenko AS, Shebeko VI, Shcherbinin IYu (2005) Endothelium, coronary autoregulation and stress. Bull Found Fundament Res 1: 79–94. (In Russ)].
  15. Ohya Y, Setoguchi M, Fujii K, Nagao T, Abe I, Fujishima M (1996) Impaired Action of Levcromakalim on ATP-Sensitive K+ Channels in Mesenteric Artery Cells From Spontaneously Hypertensive Rats. Hypertens 27: 1234–1239. https://doi.org/10.1161/01.HYP.27.6.1234
  16. Гаврилов ВБ, Гаврилова АР, Хмара НФ (1988) Измерение диеновых коньюгатов в плазме по ультрафиолетовому поглощению гептановых и изопропильных экстрактов кислотой. Лаб дело 2: 60–64. [Gavrilov VB, Gavrilova AR, Khmara NF (1988) Measurement of diene conjugates in plasma by ultraviolet absorption of heptane and isopropyl extracts with acid. Lab business 2: 60–64. (In Russ)].
  17. Андреева ЛИ, Кожемякин ЛА, Кишкун АА (1988) Модификация метода определения перекисей липидов в тесте с тиобарбитуровой кислотой. Лаб дело 11: 41–43. [Andreeva LI, Kozhemyakin LA, Kishkun AA (1988) Modification of the method for determining lipid peroxides in a test with thiobarbituric acid. Lab business 11: 41–43. (In Russ)].
  18. Королюк МА, Иванова ЛИ, Маморова ИГ, Токарев ВЕ (1988) Метод определения активности каталазы. Лаб дело 1: 16–19. [Korolyuk MA, Ivanova LI, Mamorova IG, Tokarev VE (1988) Method for determining catalase activity. Lab business 1: 16–19. (In Russ)].
  19. Костюк ВА, Потапович АИ, Ковалева ЖВ (1990) Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцетина. Вопр мед химии 36 (2): 88–91. [Kostyuk VA, Potapovich AI, Kovaleva ZhV (1990) A simple and sensitive method for determining the activity of superoxide dismutase based on the oxidation of quercetin. Vopr Med Chem 36(2): 88–91. (In Russ)].
  20. Красько ОВ (2014) Статистический анализ данных в медицинских исследованиях: в 2 ч. Мн МГЭУ им АД Сахарова. [Krasko OV (2014) Statistical analysis of data in medical research: in 2 parts. Mn MGJeU im AD Saharova. (In Russ)].
  21. Khaled S, Makled MN, Nader MA (2020) Tiron protects against nicotine-induced lung and liver injury through antioxidant and anti-inflammatory actions in rats in vivo. Life Sci 260: 118426. https://doi.org/10.1016/j.lfs.2020.118426
  22. Дорошенко АС, Солодков АП, Шебеко ВИ (2005) Значение супероксид-анионов в регуляции тонуса коронарных сосудов и сократительной функции миокарда на фоне измененного редокс-состояния миокарда. Рос физиол журн им ИМ Сеченова 91(12): 1428–1440. [Doroshenko AS, Solodkov AP, Shebeko VI (2005) Тhe value of superoxide anions in the regulation of coronary vascular tone and myocardial contractile function against the background of an altered myocardial redox state. Russ J Physiol 91(12): 1428–1440. (In Russ)].
  23. Gutterman DD, Miura H, Liu Y (2005) Redox modulation of vascular tone: focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol 25(4): 671–678. https://doi.org/10.1161/01.ATV.0000158497.09626.3b
  24. Dwenger MM, Ohanyan V, Navedo MF, Nystoriak MA (2018) Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation 25(1): 10. https://doi.org/10.1111/micc.12426
  25. Kietadisorn R, Juni RP, Moens AL (2012) Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 302: 481–495. https://doi.org/10.1152/ajpendo.00540.2011
  26. Ortega AL, Mena S, Estrela JM (2010) Oxidative and nitrosative stress in the metastatic microenvironment. Cancers (Basel) 2(2): 274–304. https://doi.org/10.3390/cancers2020274
  27. Rossi R, Giustarini D, Milzani A, Dalle-Donne I (2009) Cysteinylation and homocysteinylation of plasma protein thiols during ageing of healthy human beings. J Cell Mol Med 13(9B): 31–40. https://doi.org/10.1111/j.1582-4934.2008.00417.x

补充文件

附件文件
动作
1. JATS XML
2.

下载 (149KB)
3.

下载 (244KB)
4.

下载 (532KB)
5.

下载 (142KB)
6.

下载 (53KB)

版权所有 © С.С. Лазуко, Л.Е. Беляева, О.П. Кужель, 2023

##common.cookie##