ВЛИЯНИЕ СЕРОВОДОРОДА И ОКСИДА АЗОТА НА СОКРАЩЕНИЯ ТОЩЕЙ КИШКИ КРЫСЫ В МОДЕЛИ СИНДРОМА РАЗДРАЖЕННОГО КИШЕЧНИКА
- Авторы: Сорокина Д.М1, Шайдуллов И.Ф1, Хаертдинов Н.Н1, Лифанова А.С1, Ситдиков Ф.Г1, Ситдикова Г.Ф1
-
Учреждения:
- Казанский федеральный университет
- Выпуск: Том 111, № 11 (2025)
- Страницы: 1797–1813
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0869-8139/article/view/355688
- DOI: https://doi.org/10.7868/S2658655X25110073
- ID: 355688
Цитировать
Аннотация
Ключевые слова
Об авторах
Д. М Сорокина
Казанский федеральный университет
Email: dinagabita@mail.ru
Казань, Россия
И. Ф Шайдуллов
Казанский федеральный университетКазань, Россия
Н. Н Хаертдинов
Казанский федеральный университетКазань, Россия
А. С Лифанова
Казанский федеральный университетКазань, Россия
Ф. Г Ситдиков
Казанский федеральный университетКазань, Россия
Г. Ф Ситдикова
Казанский федеральный университетКазань, Россия
Список литературы
- Spiller R, Garsed K (2009) Infection, inflammation, and the irritable bowel syndrome. Dig Liver Dis 41: 844–849. https://doi.org/10.1016/j.dld.2009.07.007
- Farzaei MH, Bahramsoltani R, Abdollahi M, Rahimi R (2016) The role of visceral hypersensitivity in irritable bowel syndrome: Pharmacological targets and novel treatments. J Neurogastroenterol Motil 22: 558–574. https://doi.org/10.5056/jnm16001
- Luo M, Zhuang X, Tian Z, Xiong L (2021) Alterations in short-chain fatty acids and serotonin in irritable bowel syndrome: a systematic review and meta-analysis. BMC Gastroenterol 21: 14. https://doi.org/10.1186/s12876-020-01577-5
- Zhuang X, Tian Z, Li L, Zeng Z, Chen M, Xiong L (2018) Fecal microbiota alterations associated with diarrhea-predominant irritable bowel syndrome. Front Microbiol 9: 1600. https://doi.org/10.3389/fmicb.2018.01600
- Zhao Y, Zou DW (2023) Gut microbiota and irritable bowel syndrome. J Dig Dis 24: 312–320. https://doi.org/10.1111/1751-2980.13204
- Chuah KH, Hian WX, Lim SZ, Beh KH, Mahadeva S (2023) Impact of small intestinal bacterial overgrowth on symptoms and quality of life in irritable bowel syndrome. J Dig Dis 24: 194–202. https://doi.org/10.1111/1751-2980.13189
- Aggeletopoulou I, Triantos C (2024) Microbiome Shifts and Their Impact on Gut Physiology in Irritable Bowel Syndrome. Int J Mol Sci 25. (22): 12395. https://doi.org/10.3390/ijms252212395
- Wang C, Fang X (2021) Inflammation and overlap of irritable bowel syndrome and functional dyspepsia. J Neurogastroenterol Motil 27: 153–164. https://doi.org/10.5056/JNM20175
- Emmanuel A, Raeburn A (2011) Small intestine and colon motility. Medicine (Baltimore) 39: 218-223. https://doi.org/10.1016/j.mpmed.2011.01.002
- Pimentel M, Saad RJ, Long MD, Rao SSC (2020) ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am J Gastroenterol 115: 165-178. https://doi.org/10.14309/ajg.00000000000000501
- Pyleris E, Tzivras D, Barbatzas C, Giamarellos-Bourboulis EJ, Koussoulas V, Pimentel M (2012) The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: Relationship with irritable bowel syndrome. Dig Dis Sci 57: 1321-1329. https://doi.org/10.1007/s10620-012-2033-7
- Takakura W, Pimentel M (2020) Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome - An Update. Front Psychiatry 11: 664. https://doi.org/10.3389/fpsyt.2020.00664
- Shaidullov I, Bouchareb D, Sorokina D, Sitdikova G (2025) Nitric oxide in the mechanisms of inhibitory effects of sodium butyrate on colon contractions in a mouse model of irritable bowel syndrome. Naunyn Schmiedebergs Arch Pharmacol 398: 1905-1914. https://doi.org/10.1007/s00210-024-03403-1
- Shaidullov IF, Shafigullin MU, Gabitova LM, Sitdikov FG, Zefirov AL, Sitdikova GF (2018) Role of Potassium Channels in the Effects of Hydrogen Sulfide on Contractility of Gastric Smooth Muscle Cells in Rats. J Evol Biochem Physiol 54: 400-407. https://doi.org/10.1134/s0022093018050083
- Sorokina DM, Shaidullov IF, Gizzatullin AR, Sitdikov FG, Sitdikova GF (2023) The Roles of Nitric Oxide and Calcium Ions in the Effects of Hydrogen Sulfide on the Contractile Activity of the Rat Jejunum. Biophysisics 68: 836-843. https://doi.org/10.1134/S0006350923050287
- Li YR, Li Y, Jin Y, Xu M, Fan HW, Zhang Q, Tan GH, Chen J, Li YQ (2022) Involvement of nitrergic neurons in colonic motility in a rat model of ulcerative colitis. World J Gastroenterol 28: 3854-3868. https://doi.org/10.3748/wjg.v28.i29.3854
- Singer-Englar T, Rezaie A, Gupta K, Pichetshote N, Sedighi R, Lin E, Chua KS, Pimentel M (2018) 1089 - A Novel 4-Gas Device for Breath Testing Shows Exhaled H2S is Associated with Diarrhea and Abdominal Pain in a Large Scale Prospective Trial. Gastroenterology 154: S-213. https://doi.org/10.1016/s0016-5085(18)31104-1
- Gabitova DM, Shaidullov IF, Sabirullina GI, Shafigullin MU, Sitdikov FG, Sitdikova GF (2017) Role of Cyclic Nucleotides in the Effect of Hydrogen Sulfide on Contractions of Rat Jejunum. Bull Exp Biol Med 163: 14-17. https://doi.org/10.1007/s10517-017-3726-x
- Meng XM, Huang X, Zhang CM, Liu DH, Lu HL, Kim YC, Xu WX (2015) Hydrogen sulfide-induced enhancement of gastric fundus smooth muscle tone is mediated by voltage-dependent potassium and calcium channels in mice. World J Gastroenterol 21: 4840-4851. https://doi.org/10.3748/wjg.v21.i16.4840
- Liu Y, Luo H, Liang C, Xia H, Xu W, Chen J, Chen M (2013) Actions of Hydrogen Sulfide and ATP-Sensitive Potassium Channels on Colonic Hypermotility in a Rat Model of Chronic Stress. PLoS One 8: e55853. https://doi.org/10.1371/journal.pone.0055853
- Xiao A, Liu C, Li J (2021) The Role of H2S in the Gastrointestinal Tract and Microbiota. Adv Exp Med Biol 1315: 67-98. https://doi.org/10.1007/978-981-16-0991-6_4
- Yao CK, Sarbagili-Shabat C (2023) Gaseous metabolites as therapeutic targets in ulcerative colitis. World J Gastroenterol 29: 682-691. https://doi.org/10.3748/wjg.v29.i4.682
- Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6: 917-935. https://doi.org/10.1038/nrd2425
- Jimenez M, Gil V, Martinez-Cutillas M, Mañé N, Gallego D (2017) Hydrogen sulphide as a signalling molecule regulating physiopathological processes in gastrointestinal motility. Br J Pharmacol 174: 2805-2817. https://doi.org/10.1111/bph.13918
- Linden DR, Levitt MD, Farrugia G, Szurszewski JH (2010) Endogenous production of H2S in the gastrointestinal tract: Still in search of a physiologic function. Antioxidants Redox Signal 12: 1135–1146. https://doi.org/10.1089/ars.2009.2885
- Birg A, Lin HC (2025) The Role of Bacteria-Derived Hydrogen Sulfide in Multiple Axes of Disease. Int J Mol Sci 26(7): 3340. https://doi.org/10.3390/ijms26073340
- Lu Y, Huang J, Zhang Y, Huang Z, Yan W, Zhou T, Wang Z, Liao L, Cao H, Tan B (2021) Therapeutic Effects of Berberine Hydrochloride on Stress-Induced Diarrhea-Predominant Irritable Bowel Syndrome Rats by Inhibiting Neurotransmission in Colonic Smooth Muscle. Front Pharmacol 12: 2498. https://doi.org/10.3389/fphar.2021.596686
- Wallace JL, Ianaro A, de Nucci G (2017) Gaseous Mediators in Gastrointestinal Mucosal Defense and Injury. Dig Dis Sci 62: 2223–2230. https://doi.org/10.1007/s10620-017-4681-0
- Paragomi P, Rahimian R, Kazemi MH, Gharedaghi MH, Khalifeh-Soltani A, Azary S, Javidan AN, Moradi K, Sakuma S, Delpour AR (2014) Antinociceptive and antidiarrheal effects of pioglitazone in a rat model of diarrhoea-predominant irritable bowel syndrome: Role of nitric oxide. Clin Exp Pharmacol Physiol 41: 118–126. https://doi.org/10.1111/1440-1681.12188
- Masliukov PM, Moiseev K, Budnik AF, Nozdrachev AD, Timmermans JP (2017) Development of Calbindin- and Calretinin-Immunopositive Neurons in the Enteric Ganglia of Rats. Cell Mol Neurobiol 37: 1257–1267. https://doi.org/10.1007/s10571-016-0457-x
- Masliukov PM, Budnik AF, Nozdrachev AD (2017) Neurochemical Features of Metasympathetic System Ganglia in the Course of Ontogenesis. Adv Gerontol 7: 281–289. https://doi.org/10.1134/S2079057017040087
- Brüne B (2003) Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ 10: 864–869. https://doi.org/10.1038/sj.cdd.4401261
- Barrachina M, Panes J, Esplugues J (2005) Role of Nitric Oxide in Gastrointestinal Inflammatory and Ulcerative Diseases: Perspective for Drugs Development. Curr Pharm Des 7: 31–48. https://doi.org/10.2174/1381612013398491
- Sen N, Hara MR, Kornberg MD, Cascio MB, Bae B II, Shahani N, Thomas B, Dawson TM, Dawson VL, Snyder SH, Sawa A (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10: 866–873. https://doi.org/10.1038/ncb1747
- Ramachandran A, Madesh M, Balasubramanian KA (2000) Apoptosis in the intestinal epithelium: Its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol 15: 109–120. https://doi.org/10.1046/j.1440-1746.2000.02059.x
- Upperman JS, Potoka D, Grishin A, Hackam D, Zamora R, Ford HR (2005) Mechanisms of nitric oxide-mediated intestinal barrier failure in necrotizing enterocolitis. Semin Pediatr Surg 14: 159–166. https://doi.org/10.1053/j.sempedsurg.2005.05.004
- Vicente JB, Colaco HG, Mendes MIS, Sarti P, Leandro P, Giuffrè A (2014) NO• binds human cystathionine β-synthase quickly and tightly. J Biol Chem 289: 8579–8587. https://doi.org/10.1074/jbc.M113.507533
- Giuffrè A, Vicente JB (2018) Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. Oxid Med Cell Longev 2018: 6290931. https://doi.org/10.1155/2018/6290931
- Shaidullov IF, Sorokina DM, Sitdikov FG, Hermann A, Abdulkhakov SR, Sitdikova GF (2021) Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome. BMC Gastroenterol 21: 37. https://doi.org/10.1186/s12876-021-01613-y
- Sorokina DM, Shaidullov IF, Buchareb D, Sitdikov FG, Sitdikova GF (2023) Effect of Hydrogen Sulphide on Spontaneous Contractions of the Rat Jejunum. Role of KV-, KCa-, and Kir-Channels. Biol Membr 40: 432–442. https://doi.org/10.31857/S0233475523060099
- Nalli AD, Rajagopal S, Mahavadi S, Grider JR, Murthy KS (2015) Inhibition of rhoa-dependent pathway and contraction by endogenous hydrogen sulfide in rabbit gastric smooth muscle cells. Am J Physiol Cell Physiol 308: 485–495. https://doi.org/10.1152/ajpcell.00280.2014
- Murthy KS, Zhou H, Grider JR, Makhlouf GM (2003) Inhibition of sustained smooth muscle contraction by PKA and PKG preferentially mediated by phosphorylation of RhoA. Am J Physiol – Gastrointest Liver Physiol 284(6): G1006–G1016. https://doi.org/10.1152/ajpgi.00465.2002
- Temiz TK, Demir O, Simsek F, Kaplan YC, Bahceci S, Karadas B, Celik A, Koyluoglu G (2016) Effect of nitrergic system on colonic motility in a rat model of irritable bowel syndrome. Indian J Pharmacol 48: 424–429. https://doi.org/10.4103/0253-7613.186189
- Huang C, Hu Y, Sun S, Li H, Zhuang Z, Lv B (2023) Effects of nNOS inhibition on the Escherichia coli and butyrate-producing bacteria in IBS rats with visceral hypersensitivity. Res Square V1: Preprint. https://doi.org/10.21203/RS.3.RS-2964008/V1
- Holtmann GJ, Ford AC, Talley NJ (2016) Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatology 1: 133–146.
- Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S, Mayer EA, Niesler B, Quigley EMM, Rajilić-Stojanović M, Schemann M, Schwille-Kiuntke J, Simren M, Zipfel S, Spiller RC (2016) Irritable bowel syndrome. Nat Rev Dis Prim 2: 16014. https://doi.org/10.1038/nrdp.2016.14
- Low EXS, Al Mandhari MNK, Herndon CC, Loo EXL, Tham EH, Siah KTH (2020) Parental, perinatal, and childhood risk factors for development of irritable bowel syndrome: A systematic review. J Neurogastroenterol Motil 26: 437–446. https://doi.org/10.5056/jnm20109
- Ren TH, Wu J, Yew D, Ziea E, Lao L, Leung WK, Berman B, Hu PJ, Sung JJY (2007) Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome. Am J Physiol – Gastrointest Liver Physiol 292(3): G849–G856. https://doi.org/10.1152/ajpgi.00400.2006
- Zheng Z, Tang J, Hu Y, Zhang W (2022) Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Front Med 9: 961703. https://doi.org/10.3389/fmed.2022.961703
- Singh SY, Ganguly R, Jaiswal K, Yadav AK, Kumar R, Pandey AK (2023) Molecular signalling during cross talk between gut brain axis regulation and progression of irritable bowel syndrome: A comprehensive review. World J Clin Cases 11: 4458–4476. https://doi.org/10.12998/wjcc.v11.i19.4458
- Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, Ro S (2021) Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J Neurogastroenterol Motil 27: 19–34. https://doi.org/10.5056/JNM20149
- Lin M, Hu G, Yu B (2023) Dysregulated cystathionine-β-synthase/hydrogen sulfide signaling promotes chronic stress-induced colonic hypermotility in rats. Neurogastroenterol Motil 35: e14488. https://doi.org/10.1111/NMO.14488
- Chen S, Zuo S, Zhu J, Yue T, Bu D, Wang X, Wang P, Pan Y, Liu Y (2019) Decreased Expression of Cystathionine β-Synthase Exacerbates Intestinal Barrier Injury in Ulcerative Colitis. J Crohn’s Colitis 13: 1067–1080.
- Taniguchi E, Matsunami M, Kimura T, Yonezawa D, Ishiki T, Sekiguchi F, Nishikawa H, Maeda Y, Ishikura H, Kawabata A (2009) Rhodanese, but not cystathionine-γ-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: A sign of impaired colonic sulfide detoxification? Toxicology 264: 96–103. https://doi.org/10.1016/j.tox.2009.07.018
- Wallace JL, Vong L, McKnight W, Dicay M, Martin GR (2009) Endogenous and Exogenous Hydrogen Sulfide Promotes Resolution of Colitis in Rats. Gastroenterology 137(2): 569–578. https://doi.org/10.1053/j.gastro.2009.04.012
- De Cicco P, Sanders T, Cirino G, Maloy KJ, Ianaro A (2018) Hydrogen sulfide reduces myeloid-derived suppressor cell-mediated inflammatory response in a model of Helicobacter hepaticus-induced colitis. Front Immunol 9: 351402. https://doi.org/10.3389/fimmu.2018.00499
- Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41: 106-119. https://doi.org/10.1016/j.freeradbiomed.2006.03.021
- Stummer N, Weghuber D, Feichtinger RG, Huber S, Mayr JA, Kofler B, Neureiter D, Klieser E, Hochmann S, Lauth W, Schneider AM (2022) Hydrogen Sulfide Metabolizing Enzymes in the Intestinal Mucosa in Pediatric and Adult Inflammatory Bowel Disease. Antioxidants 11(11): 2235. https://doi.org/10.3390/antiox11112235
- Wallace JL, Dicay M, McKnight W, Martin GR (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21: 4070-4076. https://doi.org/10.1096/fj.07-8669com
- Minamishima S, Bougaki M, Sips PY, De Yu J, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120: 888-896. https://doi.org/10.1161/CIRCULATIONAHA.108.833491
- Nalli AD, Bhattacharya S, Wang H, Kendig DM, Grider JR, Murthy KS (2017) Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide. Am J Physiol – Gastrointest Liver Physiol 313: G330-G341. https://doi.org/10.1152/ajpgi.00161.2017
- Martinez-Cutillas M, Gil V, Mañé N, Clave P, Gallego D, Martin MT, Jimenez M (2015) Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility. Pharmacol Res 93: 52-63. https://doi.org/10.1016/j.phrs.2015.01.002
- Jang DE, Bae JH, Chang YJ, Lee YH, Nam KT, Kim IY, Seong JK, Lee YC, Yeom SC (2018) Neuronal Nitric Oxide Synthase Is a Novel Biomarker for the Interstitial Cells of Cajal in Stress-Induced Diarrhea-Dominant Irritable Bowel Syndrome. Dig Dis Sci 63: 619-627. https://doi.org/10.1007/s10620-018-4933-7
- Tjong YW, Ip SP, Lao L, Wu J, Fong HHJ, Sung JJY, Berman B, Che CT (2011) Role of neuronal nitric oxide synthase in colonic distension-induced hyperalgesia in distal colon of neonatal maternal separated male rats. Neurogastroenterol Motil 23(7): 666-e278. https://doi.org/10.1111/j.1365-2982.2011.01697.x
- Han JP, Lee JH, Lee GS, Koo OJ, Yeom SC (2021) Positive correlation between nnos and stress-activated bowel motility is confirmed by in vivo hibit system. Cells 10(5): 1028. https://doi.org/10.3390/cells10051028
- Reinders CI, Herulf M, Ljung T, Hollenberg J, Weitzberg E, Lundberg JO, Hellström PM (2005) Rectal mucosal nitric oxide in differentiation of inflammatory bowel disease and irritable bowel syndrome. Clin Gastroenterol Hepatol 3: 777-783. https://doi.org/10.1016/S1542-3565(05)00182-5
- Yazar A, Buyukafsar K, Polat G, Pata C, Kanyik A, Tiftik EN, Baddatodlu O (2005) The urinary 5-hydroxyindole acetic acid and plasma nitric oxide levels in irritable bowel syndrome: A preliminary study. Scott Med J 50: 27-29. https://doi.org/10.1177/003693300505000111
- Wang J, Li J, Yu M, Wang Y, Ma Y (2019) An enhanced expression of hypothalamic neuronal nitric oxide synthase in a rat model of stimulated transport stress. BMC Vet Res 15: 323. https://doi.org/10.1186/S12917-019-2071-X
- Zhu LJ, Liu MY, Li H, Liu X, Chen C, Han Z, Wu HY, Jing X, Zhou HH, Suh H, Zhu DY, Zhou QG (2014) The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity. PLoS One 9: e97689. https://doi.org/10.1371/journal.pone.0097689
- Kasparek MS, Linden DR, Farrugia G, Sarr MG (2012) Hydrogen sulfide modulates contractile function in rat jejunum. J Surg Res 175: 234-242. https://doi.org/10.1016/j.jss.2011.03.069
- Wang Y, Qu R, Hu S, Xiao Y, Jiang X, Xu GY (2012) Urregulation of Cystathionine β-Synthetase Expression Contributes to Visceral Hyperalgesia Induced by Heterotypic Intermittent Stress in Rats. PLoS One 7: e53165. https://doi.org/10.1371/journal.pone.0053165
- Savidge TC (2014) Importance of NO and its related compounds in enteric nervous system regulation of gut homeostasis and disease susceptibility. Curr Opin Pharmacol 19: 54–60. https://doi.org/10.1016/j.coph.2014.07.009
- Fung C, Vanden Berghe P (2020) Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 77: 4505–4522. https://doi.org/10.1007/s00018-020-03543-6
- Miranda MR, Vestuto V, Moltedo O, Manfra M, Campiglia P, Pepe G (2023) The Ion Channels Involved in Oxidative Stress-Related Gastrointestinal Diseases. Oxygen 3: 336–365. https://doi.org/10.3390/oxygen3030022
Дополнительные файлы


