ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ СИМПАТИЧЕСКИХ ГАНГЛИОНАРНЫХ НЕЙРОНОВ В ОНТОГЕНЕЗЕ В НОРМЕ И ПРИ ПАТОЛОГИИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Нейроны симпатических пре- и параметрсбральных ганглиев различаются по своим электрофизиологическим свойствам, что способствует выполнению ими различных функций. Выделяют два основных электрофизиологических типа симпатических ганглионарных нейронов у различных млекопитающих: фазические и тонические. Развитие современных методов исследования, включая патч-кламп, позволили уточнить ранее полученные сведения об основных электрофизиологических характеристиках нейронов путем прокалывания мембраны при помощи внутриклеточных тонких стеклянных микроэлектродов. Различные особенности импульсации симпатических нейронов являются результатом дифференциальной экспрессии потенциал-зависимых ионных каналов, связанных с различными токами: входящими INa (натриевым тетродоксин-чувствительным и нечувствительным), ICa (кальциевым), IH (активируемым гиперполяризацией неселективным катионным током), ICaCl (кальций-зависимым хлорным током), а также выходящими калиевыми токами: IDR (задержанного выпрямления), IAHP (следовой гиперполяризации), IA (быстрым выходящим), IM (медленно активирующимся, не инактивируемым выходящим током). В настоящем обзоре описан вклад различных каналов в возбудимость симпатических нейронов, их изменения в постнатальном онтогенезе, а также изменения электрофизиологических характеристик ганглионарных нейронов при патологических процессах.

Об авторах

П. М Маслюков

Ярославский государственный медицинский университет Минздрава России

Email: mpm@ysmu.ru
Ярославль, Россия

Е. В Сальников

Ярославский государственный медицинский университет Минздрава России

Ярославль, Россия

В. В Порсева

Ярославский государственный медицинский университет Минздрава России

Ярославль, Россия

Список литературы

  1. Li YL (2022) Stellate Ganglia and Cardiac Sympathetic Overactivation in Heart Failure. Int J Mol Sci 23(21): 13311. https://doi.org/10.3390/ijms232113311
  2. Micieli G, Hilz MJ, Cortelli P (2023) Autonomic disorders in clinical practice. Springer, Cham. https://doi.org/10.1007/978-3-031-43036-7
  3. Ноздрачев АД (1983) Физиология вегетативной нервной системы. Медицина, Ленинград.
  4. Скок ВИ, Иванов АЯ (1989) Естественная активность вегетативных ганглиев. Наукова думка, Киев.
  5. McLachlan EM (ed) (1995) Autonomic Ganglia. Harwood, Luxembourg.
  6. Jänig W (2022) The Integrative Action of the Autonomic Nervous System. Neurobiology of Homeostasis. Cambridge Univer Press.
  7. Szurszewski JH, Ermilov LG, Miller SM (2002) Prevertebral ganglia and intestinofugal afferent neurones. Gut 51(Suppl 1): i6–i10. https://doi.org/10.1136/gut.51.suppl_1.i6
  8. McLachlan EM (2003) Transmission of signals through sympathetic ganglia--modulation, integration or simply distribution? Acta Physiol Scand 177(3): 227–235. https://doi.org/10.1046/j.1365-201X.2003.01075.x
  9. Jobling P, Gibbins IL (1999) Electrophysiological and morphological diversity of mouse sympathetic neurons. J Neurophysiol 82(5): 2747–2764. https://doi.org/10.1152/jn.1999.82.5.2747
  10. Cassell JF, Clark AL, McLachlan EM (1986) Characteristics of phasic and tonic sympathetic ganglion cells of the guinea-pig. J Physiol 372: 457–483. https://doi.org/10.1113/jphysiol.1986.sp016020
  11. Wang HS, McKinnon D (1995) Potassium currents in rat prevertebral and paravertebral sympathetic neurones: control of firing properties. J Physiol 485(Pt 2): 319–335. https://doi.org/10.1113/jphysiol.1995.sp020732
  12. Karila P, Horn JP (2000) Secondary nicotinic synapses on sympathetic B neurons and their putative role in ganglionic amplification of activity. J Neurosci 20(3): 908–918. https://doi.org/10.1523/JNEUROSCI.20-03-00908.2000
  13. Rimmer K, Horn JP (2010) Weak and straddling secondary nicotinic synapses can drive firing in rat sympathetic neurons and thereby contribute to ganglionic amplification. Front Neurol 1: 130. https://doi.org/10.3389/fneur.2010.00130
  14. Springer MG, Kullmann PH, Horn JP (2015) Virtual leak channels modulate firing dynamics and synaptic integration in rat sympathetic neurons: implications for ganglionic transmission in vivo. J Physiol 593(4): 803–823. https://doi.org/10.1113/jphysiol.2014.284125
  15. McKinnon ML, Tian K, Li Y, Sokoloff AJ, Galvin ML, Choi MH, Prinz A, Hochman S (2019) Dramatically Amplified Thoracic Sympathetic Postganglionic Excitability and Integrative Capacity Revealed with Whole-Cell Patch-Clamp Recordings. eNeuro 6(2): ENEURO.0433-18.2019. https://doi.org/10.1523/ENEURO.0433-18.2019
  16. Martinez-Pinna J, Soriano S, Tuduri E, Nadal A, de Castro F (2018) A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons. Front Physiol 9: 508. https://doi.org/10.3389/fphys.2018.00508
  17. Mao Y, Wang B, Kunze W (2006) Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol 96(3): 998–1010. https://doi.org/10.1152/jn.00204.2006
  18. Kullmann PHM, Horn JP (2022) Patch-clamp analysis of nicotinic synapses whose strength straddles the firing threshold of rat sympathetic neurons. Front Neurosci 16: 869753. https://doi.org/10.3389/fnins.2022.869753
  19. Rivas-Ramirez P, Reboreda A, Rueda-Ruzafa L, Herrera-Perez S, Lamas JA (2020) Contribution of KCNQ and TREK Channels to the Resting Membrane Potential in Sympathetic Neurons at Physiological Temperature. Int J Mol Sci 21(16): 5796. https://doi.org/10.3390/ijms21165796
  20. De Castro F, Geijo-Barrientos E, Gallego R (1997) Calcium-activated chloride current in normal mouse sympathetic ganglion cells. J Physiol 498(Pt 2): 397–408. https://doi.org/10.1113/jphysiol.1997.sp021866
  21. Furness JB (2006) The enteric nervous system. Blackwell Publ, Oxford.
  22. Kullmann PH, Sikora KM, Clark KL, Arduini I, Springer MG, Horn JP (2016) HCN hyperpolarization-activated cation channels strengthen virtual nicotinic EPSPs and thereby elevate synaptic amplification in rat sympathetic neurons. J Neurophysiol 116(2): 438–447. https://doi.org/10.1152/jn.00223.2016
  23. Зефиров АЛ, Ситдикова ГФ (2010) Ионные каналы возбудимой клетки (структура, функция, патология). Арт-кафе, Казань.
  24. Luther JA, Birren SJ (2009) Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci 151(1): 46–60. https://doi.org/10.1016/j.autneu.2009.08.009
  25. Belluzzi O, Sacchi O (1991) A five-conductance model of the action potential in the rat sympathetic neurone. Prog Biophys Mol Biol 55(1): 1–30. https://doi.org/10.1016/0079-6107(91)90009-h
  26. Lamas JA, Romero M, Reboreda A, Sánchez E, Ribeiro SJ (2009) A riluzole- and valproate-sensitive persistent sodium current contributes to the resting membrane potential and increases the excitability of sympathetic neurones. Pflugers Arch 458(3): 589–599. https://doi.org/10.1007/s00424-009-0648-0
  27. Catterall WA (2023) Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels (Austin) 17(1): 2281714. https://doi.org/10.1080/19336950.2023.2281714
  28. Jia Z, Jia Y, Liu B, Zhao Z, Jia Q, Liang H, Zhang H (2008) Genistein inhibits voltage-gated sodium currents in SCG neurons through protein tyrosine kinase-dependent and kinase-independent mechanisms. Pflugers Arch 456(5): 857–866. https://doi.org/10.1007/s00424-008-0444-2
  29. Lee B, Ahmad S, Edling CE, Huang CL, LeBeau FEN, Jeevaratnam K (2025) Age-dependent reduction in voltage-gated inward sodium current and Scn8a gene expression in murine stellate ganglia. Ann N Y Acad Sci 1545(1): 91-104. https://doi.org/10.1111/nyas.15298
  30. Scott MB, Kammermeier PJ (2024) Rat Sympathetic Neuron Calcium Channels Are Insensitive to Gabapentin. Pharmaceuticals (Basel) 17(9): 1237. https://doi.org/10.3390/ph17091237
  31. Martinez-Pinna J, Lamas JA, Gallego R (2002) Calcium current components in intact and dissociated adult mouse sympathetic neurons. Brain Res 951(2): 227–236. https://doi.org/10.1016/s0006-8993(02)03165-7
  32. Yoon JY, Ho WK (2023) Involvement of Ca2+ in Signaling Mechanisms Mediating Muscarinic Inhibition of M Currents in Sympathetic Neurons. Cell Mol Neurobiol 43(5): 2257–2271. https://doi.org/10.1007/s10571-022-01303-7
  33. Hernandez CC, Zaika O, Tolstykh GP, Shapiro MS (2008) Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. J Physiol 586(7): 1811–1821. https://doi.org/10.1113/jphysiol.2007.148304
  34. Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283(5748): 673–676. https://doi.org/10.1038/283673a0
  35. Borgini M, Mondal P, Liu R, Wipf P (2021) Chemical modulation of Kv7 potassium channels. RSC Med Chem 12(4): 483–537. https://doi.org/10.1039/d0md00328j
  36. Romero M, Reboreda A, Sanchez E, Lamas JA (2004). Newly developed blockers of the M-current do not reduce spike frequency adaptation in cultured mouse sympathetic neurons. 19: 2693–2702. https://doi.org/10.1111/j.1460-9568.2004.03363.x
  37. Manis PB (2015) Delayed Rectifier and A-Type Potassium Channels. In: Jaeger D, Jung R (eds). Encyclopedia of Computational Neuroscience. Springer, New York. https://doi.org/10.1007/978-1-4614-6675-8_227
  38. Zaika O, Tolstykh GP, Jaffe DB, Shapiro MS (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci 27: 8914–8926. https://doi.org/10.1523/JNEUROSCI.1739-07.2007
  39. Malin SA, Nerbonne JM (2000) Elimination of the fast transient in superior cervical ganglion neurons with expression of KV4.2W362F: molecular dissection of IA. J Neurosci 20(14): 5191–5199. https://doi.org/10.1523/JNEUROSCI.20-14-05191.2000
  40. Malin SA, Nerbonne JM (2001) Molecular heterogeneity of the voltage-gated fast transient outward K+ current, IAf, in mammalian neurons. J Neurosci 21(20): 8004–8014. https://doi.org/10.1523/JNEUROSCI.21-20-08004.2001
  41. Malin SA, Nerbonne JM (2002) Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci 22: 10094–10105. https://doi.org/10.1523/JNEUROSCI.22-23-10094.2002
  42. Bender RA, Baram TZ (2008) Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog Neurobiol 86: 129–140. https://doi.org/10.1016/j.pneurobio.2008.09.007
  43. Zhong LY, Fan XR, Shi ZJ, Fan ZC, Luo J, Lin N, Liu YC, Wu L, Zeng XR, Cao JM, Wei Y (2019) Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion (HCN) Channels Regulate PC12 Cell Differentiation Toward Sympathetic Neuron. Front Cell Neurosci 13: 415. https://doi.org/10.3389/fncel.2019.00415
  44. Martinez-Pinna J, Davies PJ, McLachlan EM (2000) Diversity of channels involved in Ca2+ activation of K+ channels during the prolonged AHP in guinea-pig sympathetic neurons. J Neurophysiol 84(3): 1346–1354. https://doi.org/10.1152/jn.2000.84.3.1346
  45. Ha GE, Cheong E (2017) Spike Frequency Adaptation in Neurons of the Central Nervous System. Exp Neurobiol 26(4): 179–185. https://doi.org/10.5607/en.2017.26.4.179
  46. Ireland DR, Davies PJ, McLachlan EM (1998) The role of N-type Ca2+ channels in regulating excitability of guinea-pig sympathetic neurones. J Auton Nerv Syst 73(2-3): 109–114. https://doi.org/10.1016/s0165-1838(98)00127-1
  47. Davies PJ, Ireland DR, Martinez-Pinna J, McLachlan EM (1999) Electrophysiological roles of L-type channels in different classes of guinea pig sympathetic neuron. J Neurophysiol 82: 818–828. https://doi.org/10.1152/jn.1999.82.2.818
  48. Smith MP, Beacham D, Ensor E, Koltzenburg M (2004) Cold-sensitive, menthol-insensitive neurons in the murine sympathetic nervous system. Neuroreport 15(9): 1399–1403. https://doi.org/10.1097/01.wnr.0000126559.35631.54
  49. Fujita M, Sato T, Yajima T, Masaki E, Ichikawa H (2017) TRPC1, TRPC3, and TRPC4 in Rat Orofacial Structures. Cells Tissues Organs 204(5–6): 293–303. https://doi.org/10.1159/000477665
  50. Korobkin AA, Emamilov AI, Korzina MB, Vasil'Eva OA, Porseva VV, Mashyukov PM (2013) Developmental changes in the expression of TRPV1 channels in autonomic nervous system neurons. Neurosci Behav Physiol 43(6): 743–747.
  51. Zhou M, Liu Y, He Y, Xie K, Quan D, Tang Y, Huang H, Huang C (2019) Selective chemical ablation of transient receptor potential vanilloid 1 expressing neurons in the left stellate ganglion protects against ischemia-induced ventricular arrhythmias in dogs. Biomed Pharmacother 120: 109500. https://doi.org/10.1016/j.biopha.2019.109500
  52. Dominguez-Rodriguez M, Drobny H, Boehm S, Salzer I (2017) Electrophysiological Investigation of the Subcellular Fine Tuning of Sympathetic Neurons by Hydrogen Sulfide. Front Pharmacol 8: 522. https://doi.org/10.3389/fphar.2017.00522
  53. Hirst GD, McLachlan EM (1986) Development of dendritic calcium currents in ganglion cells of the rat lower lumbar sympathetic chain. J Physiol 377: 349–368. https://doi.org/10.1113/jphysiol.1986.sp016191
  54. Ireland DR, Davies PJ, McLachlan EM (1999) Calcium channel subtypes differ at two types of cholinergic synapse in lumbar sympathetic neurones of guinea-pigs. J Physiol 514(Pt 1): 59–69. https://doi.org/10.1111/j.1469-7793.1999.059af.x
  55. Ireland DR (1999) Preferential formation of strong synapses during re-innervation of guinea-pig sympathetic ganglia. J Physiol 520(Pt 3): 827–837. https://doi.org/10.1111/j.1469-7793.1999.00827.x
  56. Bratton B, Davies P, Jänig W, McAllen R (2010) Ganglionic transmission in a vasomotor pathway studied in vivo. J Physiol. 588(Pt 9): 1647–1659. https://doi.org/10.1113/jphysiol.2009.185025
  57. Boczek-Funcke A, Häbler HJ, Jänig W, Michaelis M (1992) Respiratory modulation of the activity in sympathetic neurones supplying muscle, skin and pelvic organs in the cat. J Physiol 449: 333–361. https://doi.org/10.1113/jphysiol.1992.sp019089
  58. Häbler HJ, Jänig W, Krummel M, Peters OA (1993) Respiratory modulation of the activity in postganglionic neurons supplying skeletal muscle and skin of the rat hindlimb. J Neurophysiol 70(3): 920–930. https://doi.org/10.1152/jn.1993.70.3.920
  59. Kirillova-Woytke I, Baron R, Jänig W (2014) Reflex inhibition of cutaneous and muscle vasoconstrictor neurons during stimulation of cutaneous and muscle nociceptors. J Neurophysiol 111(9): 1833–1845. https://doi.org/10.1152/jn.00798.2013
  60. Macefeld VG, Wallin BG (2018) Physiological and pathophysiological firing properties of single postganglionic sympathetic neurons in humans. J Neurophysiol 119(3): 944–956. https://doi.org/10.1152/jn.00004.2017
  61. McLachlan EM, Davies PJ, Häbler HJ, Jamieson J (1997) On-going and reflex synaptic events in rat superior cervical ganglion cells. J Physiol 501(Pt): 1165–1181. https://doi.org/10.1111/j.1469-7793.1997.165bo.x
  62. Johnson CD, Gilbey MP (1996) On the dominant rhythm in the discharges of single postganglionic sympathetic neurones innervating the rat tail artery. J Physiol 497(Pt 1): 241–259. https://doi.org/10.1113/jphysiol.1996.sp021764
  63. Häbler H, Bartsch T, Jänig W (1999) Rhythmicity in single fiber postganglionic activity supplying the rat tail. J Neurophysiol 81(5): 2026–2036. https://doi.org/10.1152/jn.1999.81.5.2026
  64. Macefield VG, Elam M, Wallin BG (2002) Firing properties of single postganglionic sympathetic neurones recorded in awake human subjects. Auton Neurosci Basic Clin 95: 146–159. https://doi.org/10.1016/S1566-0702(01)00389-7
  65. Masliukov PM, Fateev MM, Nozdrachev AD (2000) Age-dependent changes of electrophysiologic characteristics of the stellate ganglion conducting pathways in kittens. Auton Neurosci 83(1–2): 12–18. https://doi.org/10.1016/S0165-1838(00)00091-6
  66. Masliukov PM (2001) Sympathetic neurons of the cat stellate ganglion in postnatal ontogenesis: morphometric analysis. Auton Neurosci 89(1-2): 48–53. https://doi.org/10.1016/S1566-0702(01)00246-6
  67. Hirst GD, McLachlan EM (1984) Post-natal development of ganglia in the lower lumbar sympathetic chain of the rat. J Physiol 349: 119–134. https://doi.org/10.1113/jphysiol.1984.sp015147
  68. Ratliff A, Pekala D, Wenner P (2023) Plasticity in Preganglionic and Postganglionic Neurons of the Sympathetic Nervous System during Embryonic Development. eNeuro 10(11): ENEURO.0297-23.2023. https://doi.org/10.1523/ENEURO.0297-23.2023
  69. Luther JA, Birren SJ (2006) Nerve growth factor decreases potassium currents and alters repetitive firing in rat sympathetic neurons. J Neurophysiol 96(2): 946–958. https://doi.org/10.1152/jn.01078.2005
  70. De La Cruz L, Bui D, Moreno CM, Vivas O (2024) Sympathetic motor neuron dysfunction is a missing link in age-associated sympathetic overactivity. Elife 12: RP91663. https://doi.org/10.7554/eLife.91663
  71. Sandow LS, Hill EC (1999) Physiological and anatomical studies of the development of the sympathetic innervation to rat iris arterioles. J Auton Nerv Syst 77(2–3): 152–163.
  72. Anderson RL, Jobling P, Matthew SE, Gibbins IL (2002) Development of convergent synaptic inputs to subpopulations of autonomic neurons. J Comp Neurol 447(3): 218–233. https://doi.org/10.1002/cne.10222
  73. Masliukov PM, Pankov VA, Strelkov AA, Masliukova EA, Shilkin VV, Nozdrachev AD (2000) Morphological features of neurons innervating different viscera in the cat stellate ganglion in postnatal ontogenesis. Auton Neurosci 84(3): 169–175. https://doi.org/10.1016/S1566-0702(00)00208-3
  74. Маслюков ПМ, Шилкин ВВ, Тиммерманс Ж-П (2005) Иммуноцитохимическая характеристика нейронов звездчатого узла симпатического ствола мыши в постнатальном онтогенезе. Морфология 128(5): 41–44.
  75. Masliukov PM, Emanuilov AI, Budnik AF (2023) Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken) 306(9): 2249–2263. https://doi.org/10.1002/ar.25015
  76. Raucher S, Dryer SE (1994) Functional expression of A-currents in embryonic chick sympathetic neurones during development in situ and in vitro. J Physiol 479(Pt 1): 77–93. https://doi.org/10.1113/jphysiol.1994.sp020279
  77. Raucher S, Dryer SE (1995) Target-derived factors regulate the expression of Ca2+-activated K+ currents in developing chick sympathetic neurones. J Physiol 486(Pt 3): 605–614. https://doi.org/10.1113/jphysiol.1995.sp020838
  78. Fraschi JE (1983) Membrane currents of cultured rat sympathetic neurons under voltage clamp. J Neurophysiol 50(6): 1460–1478. https://doi.org/10.1152/jn.1983.50.6.1460
  79. McFarlane S, Cooper E (1993) Extrinsic factors influence the expression of voltage-gated K currents on neonatal rat sympathetic neurons. J Neurosci 13(6): 2591–2600. https://doi.org/10.1523/JNEUROSCI.13-06-02591.1993
  80. McFarlane S, Cooper E (1992) Postnatal development of voltage-gated K currents on rat sympathetic neurons. J Neurophysiol 67(5): 1291–300. https://doi.org/10.1152/jn.1992.67.5.1291
  81. Rubin E (1985) Development of the rat superior cervical ganglion: initial stages of synapse formation. J Neurosci 5(3): 697–704. https://doi.org/10.1523/JNEUROSCI.05-03-00697.1985
  82. Sica AL, Gootman PM, Gootman N, Armour JA (1994) Neuronal activity of the stellate ganglia in neonatal swine. J Auton Nerv Syst 48(3): 273–277. https://doi.org/10.1016/0165-1838(94)90056-6
  83. Gootman PM, Gandhi MR, Coren CY, Kaplan NM, Pisana FM, Buckley BJ, Armour JA, Gootman N (1992) Cardiac responses elicited by stimulation of loci within stellate ganglia of developing swine. J Auton Nerv Syst 38(3): 191–200. https://doi.org/10.1016/0165-1838(92)90030-k
  84. Коробкин АА, Васильева ОА, Эмануилов АИ, Корзина МБ, Маслюков ПМ (2010) Возрастные особенности фоновой электрической активности нейронов краниального шейного ганглия крысы. Рос физиол журн им ИМ Сеченова 96(6): 566–572.
  85. Кузьменко НВ, Плисс МГ, Цырлин ВА (2020) Изменение вегетативного контроля сердечно-сосудистой системы при старении человека: метаанализ. Успехи геронтол 33(4): 748–760.
  86. Kenney MJ (2010) Animal aging and regulation of sympathetic nerve discharge. J Appl Physiol (1985) 109(4): 951–958. https://doi.org/10.1152/japplphysiol.00506.2010
  87. Haburčák M, Harrison J, Buyukozturk MM, Sona S, Bates S, Birren SJ (2022) Heightened sympathetic neuron activity and altered cardiomyocyte properties in spontaneously hypertensive rats during the postnatal period. Front Synaptic Neurosci 14: 995474. https://doi.org/10.3389/fnsyn.2022.995474
  88. Scott-Solomon E, Boehm E, Kuruvilla R (2021) The sympathetic nervous system in development and disease. Nat Rev Neurosci 22(11): 685–702. https://doi.org/10.1038/s41583-021-00523-y
  89. Ziegler KA, Engelhardt S, Carnevale D, McAlpine CS, Guzik TJ, Dimmeier S, Swirski FK (2025) Neural Mechanisms in Cardiovascular Health and Disease. Circ Res 136(11): 1233–1261. https://doi.org/10.1161/CIRCRESAHA.125.325580
  90. Lopes HF, Silva HB, Consolim-Colombo FM, Barreto Filho JA, Riccio GM, Giorgi DM, Krieger EM (2000) Autonomic abnormalities demonstrable in young normotensive subjects who are children of hypertensive parents. Braz J Med Biol Res 33(1): 51–54. https://doi.org/10.1590/s0100-879x200000100007
  91. Davis H, Herring N, Paterson DJ (2020) Downregulation of M Current Is Coupled to Membrane Excitability in Sympathetic Neurons Before the Onset of Hypertension. Hypertension 76(6): 1915–1923. https://doi.org/10.1161/HYPERTENSIONAHA.120.15922
  92. Shanks J, Manou-Stathopoulou S, Lu CJ, Li D, Paterson DJ, Herring N (2013) Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 305(7): H980–H986. https://doi.org/10.1152/ajpheart.00255.2013
  93. Li D, Lee CW, Buckler K, Parekh A, Herring N, Paterson DJ (2012) Abnormal intracellular calcium homeostasis in sympathetic neurons from young prehypertensive rats. Hypertension 59(3): 642–649. https://doi.org/10.1161/HYPERTENSIONAHA.111.186460
  94. Li M, Sorensen M, Johnson MA, Ingram SL, Andresen MC, Habecker BA (2025) Hypertension increases sympathetic neuron activity by enhancing intraganglionic cholinergic collateral connections. J Physiol 603(7): 2005–2020. https://doi.org/10.1113/JP286601
  95. Oh JW, Lee CK, Whang K, Jeong SW (2021) Functional plasticity of cardiac efferent neurons contributes to traumatic brain injury-induced cardiac autonomic dysfunction. Brain Res 1753: 147257. https://doi.org/10.1016/j.brainres.2020.147257
  96. Lee CK, Nguyen HS, Kang SJ, Jeong SW (2024) Cellular and Molecular Mechanisms Underlying Altered Excitability of Cardiac Efferent Neurons in Cirrhotic Rats. Biomedicines 12(8): 1722. https://doi.org/10.3390/biomedicines12081722
  97. Silva-Dos-Santos NM, Oliveira-Abreu K, Moreira-Junior L, Santos-Nascimento TD, Silva-Alves KSD, Coelho-de-Souza AN, Ferreira-da-Silva FW, Leal-Cardoso JH (2020) Diabetes mellitus alters electrophysiological properties in neurons of superior cervical ganglion of rats. Brain Res 1729: 146599. https://doi.org/10.1016/j.brainres.2019.146599
  98. Huggett RJ, Scott EM, Gilbey SG, Bannister J, Mackintosh AF, Mary DA (2005) Disparity of autonomic control in type 2 diabetes mellitus. Diabetologia. 48(1): 172–179. https://doi.org/10.1007/s00125-004-1601-6
  99. Colangelo LA, Vu TH, Szklo M, Burke GL, Sibley C, Liu K (2015) Is the association of hypertension with cardiovascular events stronger among the lean and normal weight than among the overweight and obese? The multi-ethnic study of atherosclerosis. Hypertension 66(2): 286–293. https://doi.org/10.1161/HYPERTENSIONAHA.114.04863
  100. Lambert E, Straznicky NE, Dawood T, Ika-Sari C, Grima M, Esler MD, Schlaich MP, Lambert GW (2011) Change in sympathetic nerve firing pattern associated with dietary weight loss in the metabolic syndrome. Front Physiol 2: 52. https://doi.org/10.3389/fphys.2011.00052

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».