Реакция резидентных макрофагов и нейтрофилов эндоневрия на травму седалищного нерва крысы и трансплантацию МСК

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Целью настоящей работы явилось изучение распределения резидентных макрофагов и нейтрофилов в эндоневрии седалищного нерва крысы в ранние сроки после травмы и субпериневрального введения суспензии мезенхимных стволовых клеток. Для выяснения реакции резидентных макрофагов и нейтрофилов на механическое повреждение периферических нервных проводников была использована экспериментальная модель травмы седалищного нерва крысы путем наложения лигатуры (в течение 40 с) с применением клеточной терапии. Для идентификации макрофагов эндоневрия применяли иммуногистохимическую реакцию на кальций-связывающий белок Iba-1, маркер мононуклеарных фагоцитов. Нейтрофилы исследовали на препаратах, окрашенных гематоксилином-эозином и толуидиновым синим. Установлено, что активация резидентных макрофагов в эндоневрии седалищного нерва крысы осуществляется уже через 1 ч после травмы, на несколько часов раньше, чем в эндоневрий мигрируют из кровеносных сосудов нейтрофилы. Это свидетельствует о том, что резидентные макрофаги первыми реагируют на повреждение и стимулируют развитие процессов валлеровской дегенерации. Показано, что применение субпериневральной трансплантации мезенхимных стволовых клеток приводит к снижению активации резидентных макрофагов и уменьшению количества мигрирующих в эндоневрий поврежденного нерва нейтрофилов. Возможные причины установленных фактов обсуждаются.

Об авторах

Е. С. Петрова

Институт экспериментальной медицины

Email: iempes@yandex.ru
Санкт-Петербург, Россия

Е. А. Колос

Институт экспериментальной медицины

Санкт-Петербург, Россия

Список литературы

  1. Карагяур МН, Макаревич ПИ, Шевченко ЕК, Стамбольский ДВ, Калинина НИ, Парфёнова ЕВ (2017) Современные подходы к регенерации периферических нервов после травмы: перспективы генной и клеточной терапии. Гены & клетки 12(1): 6–14. [Karagyaur MN, Makarevich PI, Shevchenko EK, Stambolsky DV, Kalinina NI, Parfyonova YeV (2017) Modern approaches to peripheral nerve regeneration after injury: the prospects of gene and cell therapy. Geny` & kletki 12(1): 6–14. (In Russ)]. https://doi.org/10.23868/201703001
  2. Wang ML, Rivlin M, Graham JG, Beredjiklian PK (2019) Peripheral nerve injury, scarring, and recovery. Connect Tissue Res 60(1): 3–9. https://doi.org/10.1080/03008207.2018.1489381
  3. Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC (2020) Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res 98(5): 780–795. https://doi.org/10.1002/jnr.24538
  4. Song X, Li R, Chu X, Li Q, Li R, Li Q, Tong KY, Gu X, Ming D (2025) Multilevel analysis of the central-peripheral-target organ pathway: contributing to recovery after peripheral nerve injury. Neural Regen Res 20(10): 2807–2822. https://doi.org/10.4103/NRR.NRR-D-24-00641
  5. Челышев ЮА, Сайткулов КИ (2000) Развитие, фенотипическая характеристика и коммуникации шванновских клеток. Успехи физиол наук 31(3): 54–69. [Chelyshev YuA, Saitkulov KI (2000) Development, phenotypic characteristics and communication of Schwann cells. Uspekhi fiziol nauk 31(3): 54–69. (In Russ)].
  6. Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7: a020487. https://doi.org/10.1101/cshperspect.a020487
  7. Carr MJ, Johnston AP (2017) Schwann cells as drivers of tissue repair and regeneration. Curr Opin Neurobiol 47: 52–57. https://doi.org/10.1016/j.conb.2017.09.003
  8. Koeppen AH (2004) Wallerian degeneration: history and clinical significance. J Neurol Sci 220: 115–117. https://doi.org/10.1016/j.jns.2004.03.008
  9. Zochodne DW (2008) Neurobiology of peripheral nerve regeneration. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo. Cambridge Univer Press.
  10. Живолупов СА, Рашидов НА, Самарцев ИН, Яковлев ЕВ (2013) Современные представления о регенерации нервных волокон при травмах периферической нервной системы. Вестн Рос Военно-мед акад 3(43): 190–198. [Zhivolupov SA, Rashidov NA, Samarcev IN, Yakovlev EV (2013) Modern concepts of nerve fiber regeneration in injuries of the peripheral nervous system. Vestn Ross Voenno-med akad 3(43): 190–198. (In Russ)].
  11. Kerns JM, Walter JS, Patetta MJ, Sood A, Hussain AK, Chung JJ, Deshpande A, DesLaurier JT, Dieter RA, Siemionow M, Seiler FA, Amirouche FML, Gonzalez MH (2021) Histological Assessment of Wallerian Degeneration of the Rat Tibial Nerve Following Crush and Transection Injuries. J Reconstr Microsurg 37(5): 391–404. https://doi.org/10.1055/s-0040-1716870
  12. Gomez-Sanchez JA, Pilch KS, van der Lans M, Fazal SV, Benito C, Wagstaff LJ, Mirsky R, Jessen KR (2017) After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. J Neurosci 37(37): 9086–9099. https://doi.org/10.1523/JNEUROSCI.1453-17.2017
  13. Mueller M, Wacker K, Ringelstein EB, Hickey WF, Imai Y, Kiefer R (2001) Rapid response of identified resident endoneurial macrophages to nerve injury. Am J Pathol 159(6): 2187–2197. https://doi.org/10.1016/S0002-9440(10)63070-2
  14. Mueller M, Leonhard C, Wacker K, Ringelstein EB, Okabe M, Hickey WF, Kiefer R (2003) Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab Invest 83(2): 175–185. https://doi.org/10.1097/01.lab.0000056993.28149.bf
  15. Qu WR, Zhu Z, Liu J, Song DB, Tian H, Chen BP, Li R, Deng LX (2021) Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res 16(1): 93–98. https://doi.org/10.4103/1673-5374.286956
  16. Xu J, Wen J, Fu L, Liao L, Zou Y, Zhang J, Deng J, Zhang H, Liu J, Wang X, Zuo D, Guo J (2021) Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice. J Neuroinflammat 18(1): 234. https://doi.org/10.1186/s12974-021-02292-y
  17. Zou Y, Zhang J, Xu J, Fu L, Xu Y, Wang X, Li Z, Zhu L, Sun H, Zheng H, Guo J (2021) SIRT6 inhibition delays peripheral nerve recovery by suppressing migration, phagocytosis and M2-polarization of macrophages. Cell Biosci 11(1): 210. https://doi.org/10.1186/s13578-021-00725-y
  18. Arvidson B (1977) Cellular uptake of exogenous horseradish peroxidase in mouse peripheral nerve. Acta Neuropathol 37: 35–41. https://doi.org/10.1007/BF00684538
  19. Kolter J, Kierdorf K, Henneke P (2020) Origin and Differentiation of Nerve-Associated Macrophages. J Immunol 204(2): 271–279. https://doi.org/10.4049/jimmunol.1901077
  20. Ydens E, Amann L, Asselbergh B, Scott CL, Martens L, Sichien D, Mossad O, Blank T, De Prijck S, Low D, Masuda T, Saeys Y, Timmerman V, Stumm R, Ginhoux F, Prinz M, Janssens S, Guilliams M (2020) Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nat Neurosci 23(5): 676–689. https://doi.org/10.1038/s41593-020-0618-6
  21. Petrova ES, Kolos EA (2021) Nerve fiber regeneration in the rat sciatic nerve after injury and administration of mesenchymal stem cells. Neurosci Behav Physiol 51(4): 513–518. https://doi.org/10.1007/s11055-021-01098-y
  22. Guselnikova VV, Razenkova VA, Kirik OV, Nikitina IA, Pavlova VS, Zharkina SI, Korzhevskii DE (2024) Detection of tissue macrophages in different organs using antibodies to the microglial marker Iba-1. Dokl Biochem Biophys 519(1): 506–511. https://doi.org/10.1134/S160767292470114X
  23. Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S (2000) Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci 113: 3073–3084. https://doi.org/10.1242/jcs.113.17.3073
  24. Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammat 30(8): 110. https://doi.org/10.1186/1742-2094-8-110
  25. Goldmann T, Wieghofer P, Jordão MJ, Prutek F, Hagemeyer N, Frenzel K, Amann L, Staszewski O, Kierdorf K, Krueger M, Locatelli G, Hochgerner H, Zeiser R, Epelman S, Geissmann F, Priller J, Rossi FM, Bechmann I, Kerschensteiner M, Linnarsson S, Jung S, Prinz M (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17(7): 797–805. https://doi.org/10.1038/ni.3423
  26. Abuzan M, Surugiu R, Wang C, Mohamud-Yusuf A, Tertel T, Catalin B, Doeppner TR, Giebel B, Hermann DM, Popa-Wagner A (2025) Extracellular Vesicles Obtained from Hypoxic Mesenchymal Stromal Cells Induce Neurological Recovery, Anti-inflammation, and Brain Remodeling After Distal Middle Cerebral Artery Occlusion in Rats. Transl Stroke Res 16(3): 817–830. https://doi.org/10.1007/s12975-024-01266-5
  27. McKay SM, Brooks DJ, Hu P, McLachlan EM (2007) Distinct types of microglial activation in white and grey matter of rat lumbosacral cord after mid-thoracic spinal transection. J Neuropathol Exp Neurol 66(8): 698–710. https://doi.org/10.1097/nen.0b013e3181256b32
  28. Кокряков ВН (2006) Очерки о врожденном иммунитете. Санкт-Петербург. Наука. [Kokryakov VN (2006) Essays on innate immunity. Sankt-Peterburg. Nauka. (In Russ)].
  29. Balog BM, Sonti A, Zigmond RE (2023) Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 228: 102488. https://doi.org/10.1016/j.pneurobio.2023.102488
  30. Yamamoto Y, Kadoya K, Terkawi MA, Endo T, Konno K, Watanabe M, Ichihara S, Hara A, Kaneko K, Iwasaki N, Ishijima M (2022) Neutrophils delay repair process in Wallerian degeneration by releasing NETs outside the parenchyma. Life Sci Alliance 5(10): e202201399. https://doi.org/10.26508/lsa.202201399
  31. Marwick JA, Mills R, Kay O, Michail K, Stephen J, Rossi AG, Dransfield I, Hirani N (2018) Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation. Cell Death Dis 9: 665. https://doi.org/10.1038/s41419-018-0710-y
  32. Liu Y, Zhao C, Zhang R, Pang Y, Li L, Feng S (2024) Progression of mesenchymal stem cell regulation on imbalanced microenvironment after spinal cord injury. Stem Cell Res Ther 15(1): 343. https://doi.org/10.1186/s13287-024-03914-x
  33. Kim Y, Jo SH, Kim WH, Kweon OK (2015) Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther 6: 229. https://doi.org/10.1186/s13287-015-0236-5
  34. Sun Z, Wei W, Liu H, Ma J, Hu M, Huang H (2018) Acute Response of Neurons: An Early Event of Neuronal Cell Death After Facial Nerve Injury. World Neurosurg 109: e252–e257. https://doi.org/10.1016/j.wneu.2017.09.157
  35. Liu Y, Wang H (2020) Peripheral nerve injury induced changes in the spinal cord and strategies to counteract/enhance the changes to promote nerve regeneration Neural Regen Res 15(2): 189–198. https://doi.org/10.4103/1673-5374.265540
  36. Hsu SH, Kuo WC, Chen YT, Yen CT, Chen YF, Chen KS, Huang WC, Cheng H (2013) New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater 9(5): 6606–6615. https://doi.org/10.1016/j.actbio.2013.01.025
  37. Masgutov R, Masgutova G, Mullakhmetova A, Zhuravleva M, Shulman A, Rogozhin A, Syromiatnikova V, Andreeva D, Zeinalova A, Idrisova K, Allegrucci C, Kiyasov A, Rizvanov A (2019) Adipose-Derived Mesenchymal Stem Cells Applied in Fibrin Glue Stimulate Peripheral Nerve Regeneration. Front Med 6: 68. https://doi.org/10.3389/fmed.2019.00068
  38. Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN (2022) Apoptotic MSCs and MSC-derived apoptotic bodies as new therapeutic tools. Current Issues Mol Biol 44(11): 5153–5172. https://doi.org/10.3390/cimb44110351

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».