Влияние приема фосфолипидов на формирование поведенческих характеристик у лабораторных мышей C57BL/6J
- Авторы: Болдырева Л.В.1, Морозова М.В.1, Павлов К.С.1, Кожевникова Е.Н.1
-
Учреждения:
- Научно-исследовательский институт нейронаук и медицины
- Выпуск: Том 110, № 2 (2024)
- Страницы: 254-267
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0869-8139/article/view/260937
- DOI: https://doi.org/10.31857/S0869813924020082
- EDN: https://elibrary.ru/DJAGXG
- ID: 260937
Цитировать
Аннотация
Препараты на основе фосфолипидов широко используются в качестве гепатопротекторных, нейропротекторных и антистрессовых лекарств, а также в составе биологически активных добавок. Кроме этого, лецитин, содержащий в своем составе до 70% смеси фосфолипидов – фосфатидилхолина, фосфатидилэтаноламина, фосфатидилинозитола и фосфатидной кислоты, повсеместно применяется в пищевом производстве в качестве эмульгатора. Дозы этих биологически активных веществ в диете современного человека могут быть очень высоки. Ранее мы показали, что хроническое воспаление кишки у мышей с мутацией в гене Muc2 приводит к нарушению поведения одновременно с существенным повышением содержания ряда форм фосфолипидов в клетках эпителия кишечника: фосфатидилхолина, фосфатидилсерина и фосфатидной кислоты. В данной работе мы исследовали эффекты длительного приема смеси этих фосфолипидов, а также эффекты длительного приема соевого лецитина на формирование поведенческих паттернов у мышей. Животные, длительно принимавшие смесь фосфолипидов, не демонстрировали естественного предпочтения по отношению к самке в тесте с двумя интрудерами (самкой и самцом). В тесте на социальные запахи они также не различали запахи самки и самца, в то время как дискриминация несоциальных запахов сохранилась. Кроме того, мы выявили снижение признаков компульсивности и тревожности при этом и отдельные черты шизофреноподобного поведения у таких животных. Прием соевого лецитина оказал схожее влияние на социальное поведение и компульсивные черты и вызвал повышение агрессии у самцов. Таким образом, долговременный перинатальный прием как смеси фосфолипидов (фосфатидилхолина, фосфатидилсерина и фосфатидной кислоты), так и соевого лецитина способен оказывать влияние на различные аспекты поведения у мышей.
Ключевые слова
Полный текст

Об авторах
Л. В. Болдырева
Научно-исследовательский институт нейронаук и медицины
Автор, ответственный за переписку.
Email: kozhevnikovaen@neuronm.ru
Россия, Новосибирск
М. В. Морозова
Научно-исследовательский институт нейронаук и медицины
Email: kozhevnikovaen@neuronm.ru
Россия, Новосибирск
К. С. Павлов
Научно-исследовательский институт нейронаук и медицины
Email: kozhevnikovaen@neuronm.ru
Россия, Новосибирск
Е. Н. Кожевникова
Научно-исследовательский институт нейронаук и медицины
Email: kozhevnikovaen@neuronm.ru
Россия, Новосибирск
Список литературы
- Maggini S, Pierre A, Calder PC (2018) Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 10(10). https://doi.org/10.3390/nu10101531
- Zhao M, Tuo H, Wang S, Zhao L (2020) The Effects of Dietary Nutrition on Sleep and Sleep Disorders. Mediat Inflamm 2020: 3142874. https://doi.org/10.1155/2020/3142874
- Adamovich Y, Aviram R, Asher G (2015) The emerging roles of lipids in circadian control. Biochim Biophys Acta 1851(8): 1017–1025. https://doi.org/10.1016/j.bbalip.2014.11.013
- Ko CW, Qu J, Black DD, Tso P (2020) Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 17(3): 169–183. https://doi.org/10.1038/s41575-019-0250-7
- Shi J, Fan J, Su Q, Yang Z (2019) Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 10: 703. https://doi.org/10.3389/fendo.2019.00703
- Hachem M, Ahmmed MK, Nacir-Delord H (2023) Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol. https://doi.org/10.1007/s12035-023-03793-y
- Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z (2022) Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 14: 975176. https://doi.org/10.3389/fnagi.2022.975176
- Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1): 31–39. https://doi.org/10.1038/35036052
- Chakraborty M, Jiang XC (2013) Sphingomyelin and its role in cellular signaling. Adv Exp Med Biol 991: 1–14. https://doi.org/10.1007/978-94-007-6331-9_1
- Ruysschaert JM, Lonez C (2015) Role of lipid microdomains in TLR-mediated signalling. Biochim Biophys Acta 1848(9): 1860–1867. https://doi.org/10.1016/j.bbamem.2015.03.014
- Estes RE, Lin B, Khera A, Davis MY (2021) Lipid Metabolism Influence on Neurodegenerative Disease Progression: Is the Vehicle as Important as the Cargo? Front Mol Neurosci 14: 788695. https://doi.org/10.3389/fnmol.2021.788695
- Hamilton LK, Fernandes KJL (2018) Neural stem cells and adult brain fatty acid metabolism: Lessons from the 3xTg model of Alzheimer’s disease. Biol Cell 110(1): 6–25. https://doi.org/10.1111/boc.201700037
- Tamura Y, Yamato M, Kataoka Y (2022) Animal Models for Neuroinflammation and Potential Treatment Methods. Front Neurol 13: 890217. https://doi.org/10.3389/fneur.2022.890217
- Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS (2021) Cardiolipin, Mitochondria, and Neurological Disease. Trends Endocrinol Metab 32(4): 224–237. https://doi.org/10.1016/j.tem.2021.01.006
- Aufschnaiter A, Kohler V, Diessl J, Peselj C, Carmona-Gutierrez D, Keller W, Buttner S (2017) Mitochondrial lipids in neurodegeneration. Cell Tissue Res 367(1): 125–140. https://doi.org/10.1007/s00441-016-2463-1
- Boldyreva LV, Morozova MV, Saydakova SS, Kozhevnikova EN (2021) Fat of the Gut: Epithelial Phospholipids in Inflammatory Bowel Diseases. Int J Mol Sci 22(21). https://doi.org/10.3390/ijms222111682
- Petan T, Mancek-Keber M (2022) Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med 188: 351–362. https://doi.org/10.1016/j.freeradbiomed.2022.06.228
- Borisova MA, Snytnikova OA, Litvinova EA, Achasova KM, Babochkina TI, Pindyurin AV, Tsentalovich YP, Kozhevnikova EN (2020) Fucose Ameliorates Tryptophan Metabolism and Behavioral Abnormalities in a Mouse Model of Chronic Colitis. Nutrients 12(2). https://doi.org/10.3390/nu12020445
- Morozova MV, Borisova MA, Snytnikova OA, Achasova KM, Litvinova EA, Tsentalovich YP, Kozhevnikova EN (2022) Colitis-associated intestinal microbiota regulates brain glycine and host behavior in mice. Sci Rep 12(1): 16345. https://doi.org/10.1038/s41598-022-19219-z
- Borisova MA, Achasova KM, Morozova KN, Andreyeva EN, Litvinova EA, Ogienko AA, Morozova MV, Berkaeva MB, Kiseleva E, Kozhevnikova EN (2020) Mucin-2 knockout is a model of intercellular junction defects, mitochondrial damage and ATP depletion in the intestinal epithelium. Sci Rep 10(1): 21135. https://doi.org/10.1038/s41598-020-78141-4
- Roy R, Paul R, Bhattacharya P, Borah A (2023) Combating Dopaminergic Neurodegeneration in Parkinson’s Disease through Nanovesicle Technology. ACS Chem Neurosci 14(16): 2830–2848. https://doi.org/10.1021/acschemneuro.3c00070
- Graham DB, Xavier RJ (2020) Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578(7796): 527–539. https://doi.org/10.1038/s41586-020-2025-2
- Geyer MA, Dulawa SC (2003) Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8: Unit 8 17. https://doi.org/10.1002/0471142301.ns0817s24
- Cadenhead KS, Geyer MA, Braff DL (1993) Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder. Am J Psychiatry 150(12): 1862–1867. https://doi.org/10.1176/ajp.150.12.1862
- Wolff AR, Bilkey DK (2010) The maternal immune activation (MIA) model of schizophrenia produces pre-pulse inhibition (PPI) deficits in both juvenile and adult rats but these effects are not associated with maternal weight loss. Behav Brain Res 213(2): 323–327. https://doi.org/10.1016/j.bbr.2010.05.008
- Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47(2): 181–188. https://doi.org/10.1001/archpsyc.1990.01810140081011
- Белоусова ИИ, Гладких ДВ, Железова АИ, Стефанова НА, Колосова НГ, Амстиславская ТГ (2009) Возрастные аспекты репродуктивной функции самцов крыс с обычным и ускоренным темпом старения. Рос физиол журн им ИМ Сеченова 95(11): 1258–1267. [Belousova II, Gladkich DV, Ghelezova AI, Stephanova NA, Kolosova NG, Amstislavskaya TG (2009) Age Aspeccts of Neurohormonal and Neurochemical Regulation of Sexual Behavior in Male Rats. Russ J Physiol 95(11): 1258–1267. (In Russ)].
- Michalikova S, van Rensburg R, Chazot PL, Ennaceur A (2010) Anxiety responses in Balb/c, c57 and CD-1 mice exposed to a novel open space test. Behav Brain Res 207(2): 402–417. https://doi.org/10.1016/j.bbr.2009.10.028
- Новиков СН (1988) Феромоны и размножение млекопитающих: физиол. аспекты. Наука. Ленингр отд-ние. [Novikov SN (1988) Pheromones and reproduction in mammals. Nauka. (LO). 1988. (In Russ)].
- Amstislavskaya TG, Bulygina VV, Tikhonova MA, Maslova LN (2013) Social isolation during peri-adolescence or adulthood: effects on sexual motivation, testosterone and corticosterone response under conditions of sexual arousal in male rats. Chin J Physiol 56(1): 36–43. https://doi.org/10.4077/CJP.2013.BAA074
- Zolotykh MA, Kozhevnikova EN (2017) The effect of social experience on olfactory preference in male mice. Appl Animal Behav Sci 189: 85–90. https://doi.org/10.1016/j.applanim.2017.01.013
- Joel D (2006) Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry 30(3): 374–388. https://doi.org/10.1016/j.pnpbp.2005.11.006
- Takahashi H, Komatsu S, Nakahachi T, Ogino K, Kamio Y (2016) Relationship of the Acoustic Startle Response and Its Modulation to Emotional and Behavioral Problems in Typical Development Children and Those with Autism Spectrum Disorders. J Autism Dev Disord 46(2): 534–543. https://doi.org/10.1007/s10803-015-2593-4
- Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF (2021) Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 12(4): 1239–1285. https://doi.org/10.1093/advances/nmaa181
- Hamamah S, Amin A, Al-Kassir AL, Chuang J, Covasa M (2023) Dietary Fat Modulation of Gut Microbiota and Impact on Regulatory Pathways Controlling Food Intake. Nutrients 15(15). https://doi.org/10.3390/nu15153365
- Agagunduz D, Icer MA, Yesildemir O, Kocak T, Kocyigit E, Capasso R (2023) The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 21(1): 240. https://doi.org/10.1186/s12967-023-04088-5
- Pifferi F, Laurent B, Plourde M (2021) Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Front Physiol 12: 645646. https://doi.org/10.3389/fphys.2021.645646
- Santos AL, Preta G (2018) Lipids in the cell: organisation regulates function. Cell Mol Life Sci 75(11): 1909–1927. https://doi.org/10.1007/s00018-018-2765-4
- Lowry TW, Kusi-Appiah AE, Fadool DA, Lenhert S (2023) Odor Discrimination by Lipid Membranes. Membranes (Basel) 13(2). https://doi.org/10.3390/membranes13020151
- Van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL (2017) The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr 1859(9 Pt B): 1558–1572. https://doi.org/10.1016/j.bbamem.2017.04.006
- Dennis EA (2015) Introduction to Thematic Review Series: Phospholipases: Central Role in Lipid Signaling and Disease. J Lipid Res 56(7): 1245–1247. https://doi.org/10.1194/jlr.E061101
- Johnson AA, Stolzing A (2019) The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18(6): e13048. https://doi.org/10.1111/acel.13048
- Farooqui AA, Horrocks LA (2005) Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod Nutr Dev 45(5): 613–631. https://doi.org/10.1051/rnd:2005049
- Nelson RK, Frohman MA (2015) Physiological and pathophysiological roles for phospholipase D. J Lipid Res 56(12): 2229–2237. https://doi.org/10.1194/jlr.R059220
- Salvi F, Gadda G (2013) Human choline dehydrogenase: medical promises and biochemical challenges. Arch Biochem Biophys 537(2): 243–252. https://doi.org/10.1016/j.abb.2013.07.018
- Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39: 407–427. https://doi.org/10.1146/annurev.biophys.093008.131234
- Das P, Estephan R, Banerjee P (2003) Apoptosis is associated with an inhibition of aminophospholipid translocase (APTL) in CNS-derived HN2-5 and HOG cells and phosphatidylserine is a recognition molecule in microglial uptake of the apoptotic HN2-5 cells. Life Sci 72(23): 2617–2627. https://doi.org/10.1016/s0024-3205(03)00163-2
- Kay JG, Fairn GD (2019) Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun Signal 17(1): 126. https://doi.org/10.1186/s12964-019-0438-z
- Lenoir G, D’Ambrosio JM, Dieudonne T, Copic A (2021) Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Front Cell Dev Biol 9: 737907. https://doi.org/10.3389/fcell.2021.737907
- Kim HY, Akbar M, Kim YS (2010) Phosphatidylserine-dependent neuroprotective signaling promoted by docosahexaenoic acid. Prostagland Leukot Essent Fatty Acids 82(4-6): 165–172. https://doi.org/10.1016/j.plefa.2010.02.025
- More MI, Freitas U, Rutenberg D (2014) Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer’s disease and dementia. Adv Ther 31(12): 1247–1262. https://doi.org/10.1007/s12325-014-0165-1
- Bond P (2017) Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals. Nutr Metab (Lond) 14: 12. https://doi.org/10.1186/s12986-017-0166-6
- Zegarlinska J, Piascik M, Sikorski AF, Czogalla A (2018) Phosphatidic acid - a simple phospholipid with multiple faces. Acta Biochim Pol 65(2): 163–171. https://doi.org/10.18388/abp.2018_2592
- Pages C, Simon MF, Valet P, Saulnier-Blache JS (2001) Lysophosphatidic acid synthesis and release. Prostagland Other Lipid Mediat 64(1–4): 1–10. https://doi.org/10.1016/s0090-6980(01)00110-1
- Moolenaar WH (1995) Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 270(22): 12949–12952. https://doi.org/10.1074/jbc.270.22.12949
- Hines OJ, Ryder N, Chu J, McFadden D (2000) Lysophosphatidic acid stimulates intestinal restitution via cytoskeletal activation and remodeling. J Surg Res 92(1): 23–28. https://doi.org/10.1006/jsre.2000.5941
- Jedrzejewska-Szmek J, Dorman DB, Blackwell KT (2023) Making time and space for calcium control of neuron activity. Curr Opin Neurobiol 83: 102804. https://doi.org/10.1016/j.conb.2023.102804
- Parato J, Bartolini F (2021) The microtubule cytoskeleton at the synapse. Neurosci Lett 753: 135850. https://doi.org/10.1016/j.neulet.2021.135850
- Rojas-Charry L, Nardi L, Methner A, Schmeisser MJ (2021) Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J Mol Med (Berl) 99(2): 161–178. https://doi.org/10.1007/s00109-020-02018-2
- Pozo Devoto VM, Onyango IG, Stokin GB (2022) Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci 16: 959598. https://doi.org/10.3389/fncel.2022.959598
- Licht-Mayer S, Campbell GR, Canizares M, Mehta AR, Gane AB, McGill K, Ghosh A, Fullerton A, Menezes N, Dean J, Dunham J, Al-Azki S, Pryce G, Zandee S, Zhao C, Kipp M, Smith KJ, Baker D, Altmann D, Anderton SM, Kap YS, Laman JD, Hart BA, Rodriguez M, Watzlawick R, Schwab JM, Carter R, Morton N, Zagnoni M, Franklin RJM, Mitchell R, Fleetwood-Walker S, Lyons DA, Chandran S, Lassmann H, Trapp BD, Mahad DJ (2020) Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol 140(2): 143–167. https://doi.org/10.1007/s00401-020-02179-x
- Khan MM, Paez HG, Pitzer CR, Alway SE (2023) The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Curr Neuropharmacol 21(5): 1100–1116. https://doi.org/10.2174/1570159X05666220908100545
- Saydakova S, Morozova K, Snytnikova O, Morozova M, Boldyreva L, Kiseleva E, Tsentalovich Y, Kozhevnikova E (2023) The Effect of Dietary Phospholipids on the Ultrastructure and Function of Intestinal Epithelial Cells. Int J Mol Sci 24(2). https://doi.org/10.3390/ijms24021788
- Mayr JA (2015) Lipid metabolism in mitochondrial membranes. J Inherit Metab Dis 38(1): 137–144. https://doi.org/10.1007/s10545-014-9748-x
- Funai K, Summers SA, Rutter J (2020) Reign in the membrane: How common lipids govern mitochondrial function. Curr Opin Cell Biol 63: 162–173. https://doi.org/10.1016/j.ceb.2020.01.006
- Bathina S, Das UN (2023) Role of Mitochondrial Dysfunction in Cellular Lipid Homeostasis and Disease. Discov Med 35(178): 653–663. https://doi.org/10.24976/Discov.Med.202335178.64
Дополнительные файлы
