A Combination of in vitro and in vivo Approaches to Studying the Mechanisms of Myocardial Hypertrophy Development in Adult Rats with Renovascular Hypertension
- Autores: Makeeva A.V.1, Artemieva M.M.1, Adasheva D.A.1, Shein V.E.1, Medvedeva N.A.1, Serebryanaya D.V.1,2
-
Afiliações:
- Lomonosov Moscow State University
- Pirogov Russian National Research Medical University, Institute of Neuroscience and Neurotechnology
- Edição: Volume 111, Nº 10 (2025)
- Páginas: 1676-1696
- Seção: METHODOLOGICAL ARTICLES
- URL: https://journals.rcsi.science/0869-8139/article/view/352706
- DOI: https://doi.org/10.7868/S2658655X25100074
- ID: 352706
Citar
Resumo
Sobre autores
A. Makeeva
Lomonosov Moscow State UniversityMoscow, Russia
M. Artemieva
Lomonosov Moscow State UniversityMoscow, Russia
D. Adasheva
Lomonosov Moscow State UniversityMoscow, Russia
V. Shein
Lomonosov Moscow State UniversityMoscow, Russia
N. Medvedeva
Lomonosov Moscow State UniversityMoscow, Russia
D. Serebryanaya
Lomonosov Moscow State University; Pirogov Russian National Research Medical University, Institute of Neuroscience and Neurotechnology
Email: dariaserebryanaya@gmail.com
Moscow, Russia; Moscow, Russia
Bibliografia
- Сердечно-сосудистые заболевания. Всемирная организация здравоохранения (ВОЗ). Режим доступа: https://www.who.int/ru/health-topics/cardiovascular-diseases#tab=tab_1 (дата обращения: 2.06.2025).
- Cardiac Atrial & Ventricular Hypertrophy, Dilatation & Enlargement (ECG). Режим доступа: https://ecgwaves.com/topic/cardiac-atrial-ventricular-hypertrophy-dilatation-enlargement-ecg/ (date od access: 2.06.2025).
- Cramariuc D, Gerdts E (2016) Epidemiology of left ventricular hypertrophy in hypertension: implications for the clinic. Expert Rev Cardiovasc Therapy 14: 915–926. https://doi.org/10.1080/14779072.2016.1186542
- Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov A-F, Dohmen PM, Choi Y-H, Wahlers T, Weymann A (2016) Cardiac Hypertrophy: An Introduction to Molecular and Cellular Basis. Med Sci Monit Basic Res 22: 75–79. https://doi.org/10.12659/MSMBR.900437
- Chung E, Leinwand LA (2014) Pregnancy as a cardiac stress model. Cardiovasc Res 101: 561–570. https://doi.org/10.1093/cvr/cvu013
- Ellison GM, Waring CD, Vicinanza C, Torella D (2012) Physiological cardiac remodelling in response to endurance exercise training: Сellular and molecular mechanisms. Heart 98: 5–10. https://doi.org/10.1136/heartjnl-2011-300639
- Kavey R-EW (2013) Left Ventricular Hypertrophy in Hypertensive Children and Adolescents: Predictors and Prevalence. Curr Hypertens Rep 15: 453–457. https://doi.org/10.1007/s11906-013-0370-3
- Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Ann New York Acad Sci 1188: 191–198. https://doi.org/10.1111/j.1749-6632.2009.05100.x
- Carreño JE, Apablaza F, Ocaranza MP, Jalil JE (2006) Cardiac hypertrophy: Мolecular and cellular events. Rev Esp Cardiol 59: 473–486.
- Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the Heart: A New Therapeutic Target? Circulation 109: 1580–1589. https://doi.org/10.1161/01.CIR.0000120390.68287.BB
- Adasheva DA, Serebryanaya DV (2024) IGF Signaling in the Heart in Health and Disease. Biochemistry (Moscow) 89: 1402–1428. https://doi.org/10.1134/S0006297924080042
- Yang F, Dong A, Mueller P, Caicedo J, Sutton AM, Odetunde J, Barrick CJ, Klyachkin YM, Abdel-Latif A, Smyth SS (2012) Coronary Artery Remodeling in a Model of Left Ventricular Pressure Overload Is Influenced by Platelets and Inflammatory Cells. PLoS One 7: e40196. https://doi.org/10.1371/journal.pone.0040196
- Kwon S (2003) H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 35: 615–621. https://doi.org/10.1016/S0022-2828(03)00084-1
- Tanaka K, Honda M, Takabatake T (2001) Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am College Cardiol 37: 676–685. https://doi.org/10.1016/S0735-1097(00)01123-2
- Kastner N, Zlabinger K, Spannbauer A, Traxler D, Mester-Tonczar J, Hašimbegović E, Gyöngyösi M (2020) New Insights and Current Approaches in Cardiac Hypertrophy Cell Culture, Tissue Engineering Models, and Novel Pathways Involving Non-Coding RNA. Front Pharmacol 11: 1314. https://doi.org/10.3389/fphar.2020.01314
- Serebryanaya DV, Adasheva DA, Konev AA, Artemieva MM, Katrukha IA, Postnikov AB, Medvedeva NA, Katrukha AG (2021) IGFBP-4 Proteolysis by PAPP-A in a Primary Culture of Rat Neonatal Cardiomyocytes under Normal and Hypertrophic Conditions. Biochemistry (Moscow) 86: 1395–1406. https://doi.org/10.1134/S0006297921110043
- Liu Y, Wang Z, Xiao W (2016) MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes. Mol Med Rep 14: 2860–2866. https://doi.org/10.3892/mmr.2016.5574
- Leenen FHH, White R, Yuan B (2001) Isoproterenol-induced cardiac hypertrophy: role of circulatory versus cardiac renin-angiotensin system. Am J Physiol – Heart Circul Physiol 281: H2410–H2416. https://doi.org/10.1152/ajpheart.2001.281.6.H2410
- Wang R, Xi L, Kukreja RC (2017) PDE5 Inhibitor Tadalafil and Hydroxychloroquine Cotreatment Provides Synergistic Protection against Type 2 Diabetes and Myocardial Infarction in Mice. J Pharmacol Exp Ther 361: 29–38. https://doi.org/10.1124/jpet.116.239087
- Hu C-M, Chen Y-H, Chiang M-T, Chau L-Y (2004) Heme Oxygenase-1 Inhibits Angiotensin II-Induced Cardiac Hypertrophy In Vitro and In Vivo. Circulation 110: 309–316. https://doi.org/10.1161/01.CIR.0000135475.35758.23
- Berry JM, Naseem RH, Rothermel BA, Hill JA (2007) Models of cardiac hypertrophy and transition to heart failure. Drug Discov Today: Disease Models 4: 197–206. https://doi.org/10.1016/j.ddmod.2007.06.003
- Doggrell S (1998) Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39: 89–105. https://doi.org/10.1016/S0008-6363(98)00076-5
- Textor SC, Lerman L (2010) Renovascular Hypertension and Ischemic Nephropathy. Am J Hypertens 23: 1159–1169. https://doi.org/10.1038/ajh.2010.174
- Souza HCD, Martins-Pinge MC, Dias Da Silva VJ, Borghi-Silva A, Gastaldi AC, Blanco JHD, Tezini GCSV (2008) Heart rate and arterial pressure variability in the experimental renovascular hypertension model in rats. Auton Neurosci 139: 38–45. https://doi.org/10.1016/j.autneu.2008.01.001
- Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) STUDIES ON EXPERIMENTAL HYPERTENSION. J Exp Med 59: 347–379. https://doi.org/10.1084/jem.59.3.347
- Lu B, Yu H, Zwartbol M, Ruifrok WP, Van Gilst WH, De Boer RA, Silljé HHW (2012) Identification of hypertrophy- and heart failure-associated genes by combining in vitro and in vivo models. Physiol Genom 44: 443–454. https://doi.org/10.1152/physiolgenomics.00148.2011
- Илатовская МЕ, Позднев ВФ, Андреев-Андриевский АА, Медведева НА (2012) Блокада синтеза эндотелина-1 усиливает степень развития реноваскулярной гипертензии в экспериментах на крысах. Рос физиол журн им ИМ Сеченова 98(7): 836–844. [Ilatovskaya ME, Pozdnyov VF, Andreev-Andrievsky AA, Medvedeva NA (2012) Blockade of endothelin-1 synthesis enhances the development of renovascular hypertension in rat experiments. Russ J Physiol 98(7): 836–844. (In Russ)].
- Langendorff O (1898) Untersuchungen am überlebenden Säugethierherzen: III. Abhandlung. Vorübergehende Unregelmässigkeiten des Herzschlages und ihre Ausgleichung. Pflüger Arch 70: 473–486. https://doi.org/10.1007/BF01662056
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Prajapati AK, Shah G (2024) Exploring in vivo and in vitro models for heart failure with biomarker insights: a review. Egypt Heart J 76: 141. https://doi.org/10.1186/s43044-024-00568-1
- Jamhiri M, Safi Dahej F, Astani A, Hejazian SH, Hafizibarjin Z, Ghobadi M, Moradi A, Khoradmehr A, Safari F (2019) Carvacrol Ameliorates Pathological Cardiac Hypertrophy in Both In-vivo and In-vitro Models. Int J Pharm Res 18. https://doi.org/10.22037/ijpr.2019.1100766
- Qi H, Ren J, E M, Zhang Q, Cao Y, Ba L, Song C, Shi P, Fu B, Sun H (2019) MiR-103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV 3 channel in rat hearts. J Cell Mol Med 23: 1926–1939. https://doi.org/10.1111/jcmm.14095
- Burrington JD (1978) Tracheal growth and healing. J Thorac Cardiovasc Surg 76: 453–458.
- Copeland JC, Reitz BA, Roberts AJ, Michaelis LL (1974) Hypothermic Asanguineous Circulatory Arrest in Adult Dogs: Ann Surgery 180: 728–733. https://doi.org/10.1097/00000658-197411000-00004
- Rodger IW (1971) Actions of the sympathomimetic bronchodilator, AQL208, on the cardiovascular, bronchiolar and skeletal muscle systems of the cat. J Pharm Pharmacol 23: 226S. https://doi.org/10.1111/j.2042-7158.1971.tb08808.x
- Walther T, Wessel N, Kang N, Sander A, Tschöpe C, Malberg H, Bader M, Voss A (2000) Altered heart rate and blood pressure variability in mice lacking the Mas protooncogene. Braz J Med Biol Res 33: 1–9. https://doi.org/10.1590/S0100-879X2000000100001
- Wan J, Wang P, Liu S, Wang X, Zhou P, Yang J (2024) Risk factors and a predictive model for left ventricular hypertrophy in young adults with salt-sensitive hypertension. J Clin Hyperten 26: 933–944. https://doi.org/10.1111/jch.14863
- Ding Y, Wang Y, Jia Q, Wang X, Lu Y, Zhang A, Lv S, Zhang J (2020) Morphological and Functional Characteristics of Animal Models of Myocardial Fibrosis Induced by Pressure Overload. Int J Hyperten 2020: 1–14. https://doi.org/10.1155/2020/3014693
- Hayashi K, Suzuki T, Sakamaki Y, Ito S (2018) Cardiac hypertrophy in chronic kidney disease–role of Aldosterone and FGF23. Ren Replace Ther 4: 10. https://doi.org/10.1186/s41100-018-0152-0
- Taddei S, Nami R, Bruno RM, Quatrini I, Nuti R (2011) Hypertension, left ventricular hypertrophy and chronic kidney disease. Heart Fail Rev 16: 615–620. https://doi.org/10.1007/s10741-010-9197-z
- Chaihongsa N, Maneesai P, Sangartit W, Rattanakanokchai S, Potue P, Khamseekaew J, Bunbupha S, Pakdeechote P (2022) Cardiorenal dysfunction and hypertrophy induced by renal artery occlusion are normalized by galangin treatment in rats. Biomed Pharmacother 152: 113231. https://doi.org/10.1016/j.biopha.2022.113231
- Oluboyo A, Omon E, Oluboyo B, Odewusi O, Edet O (2025) Correlation of renal biomarkers, electrolyte imbalances and vitamin D levels in hypertensive subjects. Med Int 5: 20. https://doi.org/10.3892/mi.2025.219
- Tamm NN, Seferian KR, Semenov AG, Mukharyamova KS, Koshkina EV, Krasnoselsky MI, Postnikov AB, Serebryanaya DV, Apple FS, Murakami MM, Katrukha AG (2008) Novel Immunoassay for Quantification of Brain Natriuretic Peptide and Its Precursor in Human Blood. Clin Chem 54: 1511–1518. https://doi.org/10.1373/clinchem.2007.100545
- Tamm NN, Semenov AG, Seferian KR, Bereznikova AV, Murakami MM, Apple FS, Koshkina EV, Krasnoselsky MI, Katrukha AG (2011) Measurement of B-type natriuretic peptide by two assays utilizing antibodies with different epitope specificity. Clin Biochem 44: 257–259. https://doi.org/10.1016/j.clinbiochem.2010.09.030
- Seferian KR, Tamm NN, Semenov AG, Mukharyamova KS, Tolstaya AA, Koshkina EV, Kara AN, Krasnoselsky MI, Apple FS, Esakova TV, Filatov VL, Katrukha AG (2007) The Brain Natriuretic Peptide (BNP) Precursor Is the Major Immunoreactive Form of BNP in Patients with Heart Failure. Clin Chem 53: 866–873. https://doi.org/10.1373/clinchem.2006.076141
Arquivos suplementares


