Taar1 modulates neuronal and glial density in the neocortex following spinal cord injury
- Авторлар: Kalinina D.S.1,2,3, Chesnokov A.A.1, Romanyuk E.A.1, Buglinina A.D.1, Khuzin D.V.1, Milov S.I.1, Konavalova S.P.1, Shkorbatova P.Y.2,4, Pavlova N.V.4, Belskaya A.D.2, Gainetdinov R.R.2, Musienko P.E.4,5,6
-
Мекемелер:
- Sirius University of Science and Technology
- St. Petersburg State University, Institute of Translational Biomedicine
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- Pavlov Institute of Physiology, Russian Academy of Sciences
- Life Improvement by Future Technologies (LIFT) Center
- Federal Center for Brain and Neurotechnologies
- Шығарылым: Том 111, № 10 (2025)
- Беттер: 1642-1658
- Бөлім: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0869-8139/article/view/352704
- DOI: https://doi.org/10.7868/S2658655X25100054
- ID: 352704
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
D. Kalinina
Sirius University of Science and Technology; St. Petersburg State University, Institute of Translational Biomedicine; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: kalinina.ds@talantiuspeh.ru
Sirius Federal Territory, Russia; St. Petersburg, Russia; St. Petersburg, Russia
A. Chesnokov
Sirius University of Science and TechnologySirius Federal Territory, Russia
E. Romanyuk
Sirius University of Science and TechnologySirius Federal Territory, Russia
A. Buglinina
Sirius University of Science and TechnologySirius Federal Territory, Russia
D. Khuzin
Sirius University of Science and TechnologySirius Federal Territory, Russia
S. Milov
Sirius University of Science and TechnologySirius Federal Territory, Russia
S. Konavalova
Sirius University of Science and TechnologySirius Federal Territory, Russia
P. Shkorbatova
St. Petersburg State University, Institute of Translational Biomedicine; Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia; St. Petersburg, Russia
N. Pavlova
Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
A. Belskaya
St. Petersburg State University, Institute of Translational BiomedicineSt. Petersburg, Russia
R. Gainetdinov
St. Petersburg State University, Institute of Translational BiomedicineSt. Petersburg, Russia
P. Musienko
Pavlov Institute of Physiology, Russian Academy of Sciences; Life Improvement by Future Technologies (LIFT) Center; Federal Center for Brain and Neurotechnologies
Email: pol-spb@mail.ru
St. Petersburg, Russia; Moscow, Russia; Moscow, Russia
Әдебиет тізімі
- Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3: 17018. https://doi.org/10.1038/nrdp.2017.18
- Sun X, Jones ZB, Chen X, Zhou L, So K-F, Ren Y (2016) Multiple organ dysfunction and systemic inflammation after spinal cord injury: А complex relationship. J Neuroinflammat 13. https://doi.org/10.1186/s12974-016-0736-y
- Arevalo-Martin A, Grassner L, Garcia-Ovejero D, Paniagua-Torija B, Barroso-Garcia G, Arandilla AG, Mach O, Turrero A, Vargas E, Alcobendas M, Rosell C, Alcaraz MA, Ceruelo S, Casado R, Talavera F, Palazón R, Sanchez-Blanco N, Maier D, Esclarin A, Molina-Holgado E (2018) Elevated Autoantibodies in Subacute Human Spinal Cord Injury Are Naturally Occurring Antibodies. Front Immunol 9: 2365. https://doi.org/10.3389/fimmu.2018.02365
- Sterner RC, Sterner RM (2023) Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.1084101
- Rowe CJ, Nwaolu U, Martin L, Huang BJ, Mang J, Salinas D, Schlaff CD, Ghenbot S, Lansford JL, Potter BK, Schobel SA, Gann ER, Davis TA (2024) Systemic inflammation following traumatic injury and its impact on neuroinflammatory gene expression in the rodent brain. J Neuroinflammat 21. https://doi.org/10.1186/s12974-024-03205-5
- Frith C, Dolan R (1996) The role of the prefrontal cortex in higher cognitive functions. Cognitiv Brain Res 5: 175–181. https://doi.org/10.1016/S0926-6410(96)00054-7
- Krishnan VS, Shin SS, Belegu V, Celnik P, Reimers M, Smith KR, Pelled G (2019) Multimodal Evaluation of TMS – Induced Somatosensory Plasticity and Behavioral Recovery in Rats With Contusion Spinal Cord Injury. Front Neurosci 13387. https://doi.org/10.3389/fnins.2019.00387
- Ghosh A, Peduzzi S, Snyder M, Schneider R, Starkey M, Schwab ME (2012) Heterogeneous Spine Loss in Layer 5 Cortical Neurons after Spinal Cord Injury. Cerebral Cortex 22: 1309–1317. https://doi.org/10.1093/cercor/bhr191
- Nagendran T, Larsen RS, Bigler RL, Frost SB, Philpot BD, Nudo RJ, Taylor AM (2017) Distal axotomy enhances retrograde presynaptic excitability onto injured pyramidal neurons via trans-synaptic signaling. Nat Commun 8: 625. https://doi.org/10.1038/s41467-017-00652-y
- Barron KD, Dentinger MP, Popp AJ, Mankes R (1988) Neurons of Layer Vb of Rat Sensorimotor Cortex Atrophy But Do Not Die After Thoracic Cord Transection. J Neuropathol Exp Neurol 47: 62–74. https://doi.org/10.1097/00005072-198801000-00008
- Moro V, Beccherle M, Scandola M, Aglioti SM (2023) Massive body-brain disconnection consequent to spinal cord injuries drives profound changes in higher-order cognitive and emotional functions: A PRISMA scoping review. Neurosci Biobehavl Rev 154: 105395. https://doi.org/10.1016/j.neubiorev.2023.105395
- David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12: 388–399. https://doi.org/10.1038/nrn3053
- Gainetdinov RR, Hoener MC, Berry MD (2018) Trace Amines and Their Receptors. Pharmacol Rev 70: 549–620. https://doi.org/10.1124/pr.117.015305
- Espinoza S, Lignani G, Caffino L, Maggi S, Sukhanov I, Leo D, Mus L, Emanuele M, Ronzitti G, Harmeier A, Medrihan L, Sotnikova TD, Chieregatti E, Hoener MC, Benfenati F, Tucci V, Fumagalli F, Gainetdinov RR (2015) TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology 40: 2217–2227. https://doi.org/10.1038/npp.2015.65
- Harrison M, O’Brien A, Adams L, Cowin G, Ruitenberg MJ, Sengul G, Watson C (2013) Vertebral landmarks for the identification of spinal cord segments in the mouse. NeuroImage 68: 22–29. https://doi.org/10.1016/j.neuroimage.2012.11.048
- Endo T, Spenger C, Tominaga T, Brene S, Olson L (2007) Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain 130: 2951–2961. https://doi.org/10.1093/brain/awm237
- Wrigley PJ, Gustin SM, Macey PM, Nash PG, Gandevia SC, Macefield VG, Siddall PJ, Henderson LA (2009) Anatomical Changes in Human Motor Cortex and Motor Pathways following Complete Thoracic Spinal Cord Injury. Cerebral Cortex 19: 224–232. https://doi.org/10.1093/cercor/bhn072
- Maldonado-Bouchard S, Peters K, Woller SA, Madahian B, Faghihi U, Patel S, Bake S, Hook MA (2016) Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury. Brain, Behavior, and Immunity 51: 176–195. https://doi.org/10.1016/j.bbi.2015.08.009
- Wu J, Stoica BA, Luo T, Sabirzhanov B, Zhao Z, Guanciale K, Nayar SK, Foss CA, Pomper MG, Faden AI (2014) Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment: Involvement of cell cycle activation. Cell Cycle 13: 2446–2458. https://doi.org/10.4161/cc.29420
- Babusyte A, Kotthoff M, Fiedler J, Krautwurst D (2013) Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. J Leukocyte Biol 93: 387–394. https://doi.org/10.1189/jlb.0912433
- Barnes DA, Galloway DA, Hoener MC, Berry MD, Moore CS (2021) TAAR1 Expression in Human Macrophages and Brain Tissue: A Potential Novel Facet of MS Neuroinflammation. IJMS 22: 11576. https://doi.org/10.3390/ijms222111576
- Polini B, Ricardi C, Bertolini A, Carnicelli V, Rutigliano G, Saponaro F, Zucchi R, Chiellini G (2023) T1AM/TAAR1 System Reduces Inflammatory Response and β-Amyloid Toxicity in Human Microglial HMC3 Cell Line. IJMS 24: 11569. https://doi.org/10.3390/ijms241411569
- Cisneros IE, Ghorpade A (2014) Methamphetamine and HIV-1-induced neurotoxicity: Role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology 85: 499–507. https://doi.org/10.1016/j.neuropharm.2014.06.011
- Zhang M-X, Hong H, Shi Y, Huang W-Y, Xia Y-M, Tan L-L, Zhao W-J, Qiao C-M, Wu J, Zhao L-P, Huang S-B, Jia X-B, Shen Y-Q, Cui C (2024) A Pilot Study on a Possible Mechanism behind Olfactory Dysfunction in Parkinson’s Disease: The Association of TAAR1 Downregulation with Neuronal Loss and Inflammation along Olfactory Pathway. Brain Sci 14: 300. https://doi.org/10.3390/brainsci14040300
- Sun M, Zhang Y, Zhang X-Q, Zhang Y, Wang X-D, Li J-T, Si T-M, Su Y-A (2024) Dopamine D1 receptor in medial prefrontal cortex mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits. Neuropsychopharmacology 49: 1341–1351. https://doi.org/10.1038/s41386-024-01866-7
- Andersen G, Krautwurst D (2016) Trace Amine-Associated Receptors in the Cellular Immune System. In: Trace Amines and Neurological Disorders. Elsevier. 97–105. https://doi.org/10.1016/B978-0-12-803603-7.00007-0
- Guerra-Gomes S, Sousa N, Pinto L, Oliveira JF (2018) Functional Roles of Astrocyte Calcium Elevations: From Synapses to Behavior. Front Cell Neurosci 11: 427. https://doi.org/10.3389/fncel.2017.00427
- Lee H-G, Wheeler MA, Quintana FJ (2022) Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 21: 339–358. https://doi.org/10.1038/s41573-022-00390-x
- Hart CG, Karimi-Abdolrezaee S (2021) Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 99: 2427–2462. https://doi.org/10.1002/jnr.24922
- Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32: 121–130. https://doi.org/10.1016/j.ceb.2015.02.004
- Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T, Skovira J, Faden AI (2014) Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways. J Neurosci 34: 10989–11006. https://doi.org/10.1523/JNEUROSCI.5110-13.2014
- Liu T, Zuo H, Ma D, Song D, Zhao Y, Cheng O (2023) Cerebrospinal fluid GFAP is a predictive biomarker for conversion to dementia and Alzheimer’s disease-associated biomarkers alterations among de novo Parkinson’s disease patients: А prospective cohort study. J Neuroinflammat 20: 167. https://doi.org/10.1186/s12974-023-02843-5
- Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung W-S, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481–487. https://doi.org/10.1038/nature21029
- Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, Sakai R, Matsuo K, Nakayama T, Yoshie O, Nakatsukasa H, Chikuma S, Shichita T, Yoshimura A (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565: 246–250. https://doi.org/10.1038/s41586-018-0824-5
- Sebek M, Gillie G, Autio D, Solt V, Le L, Martinetti L, Bonekamp K (2024) A Morphologically Distinct Subclass of Somatostatin-expressing Interneurons in the Somatosensory Cortex are Strongly Recruited by Input from the Motor Cortex. Physiology 39. https://doi.org/10.1152/physiol.2024.39.s1.690
- Freund P, Curt A, Friston K, Thompson A (2013) Tracking changes following spinal cord injury: insights from neuroimaging. Neuroscientist 19: 116–128. https://doi.org/10.1177/1073858412449192
- Nardone R, Höller Y, Sebastianelli L, Versace V, Saltuari L, Brigo F, Lochner P, Trinka E (2018) Cortical morphometric changes after spinal cord injury. Brain Res Bull 137: 107–119. https://doi.org/10.1016/j.brainresbull.2017.11.013
- Takata Y, Yamanaka H, Nakagawa H, Takada M (2023) Morphological changes of large layer V pyramidal neurons in cortical motor-related areas after spinal cord injury in macaque monkeys. Sci Rep 13: 82. https://doi.org/10.1038/s41598-022-26931-3
- Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V (2023) The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. IJMS 24: 9605. https://doi.org/10.3390/ijms24119605
- Zhang Z, Ma Z, Zou W, Guo H, Liu M, Ma Y, Zhang L (2019) The Appropriate Marker for Astrocytes: Comparing the Distribution and Expression of Three Astrocytic Markers in Different Mouse Cerebral Regions. BioMed Res Int 2019: 9605265. https://doi.org/10.1155/2019/9605265
- Tatsumi K, Isonishi A, Yamasaki M, Kawabe Y, Morita-Takemura S, Nakahara K, Terada Y, Shinjo T, Okuda H, Tanaka T, Wanaka A (2018) Olig2-Lineage Astrocytes: A Distinct Subtype of Astrocytes That Differs from GFAP Astrocytes. Front Neuroanat 12: 8. https://doi.org/10.3389/fnana.2018.00008
- Du J, Yi M, Zhou F, He W, Yang A, Qiu M, Huang H (2021) S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS. Mol Brain 14: 154. https://doi.org/10.1186/s13041-021-00865-9
- Janigro D, Mondello S, Posti JP, Unden J (2022) GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol 13: 835597. https://doi.org/10.3389/fneur.2022.835597
- Batiuk MY, Martirosyan A, Wahis J, De Vin F, Marneffe C, Kusserow C, Koeppen J, Viana JF, Oliveira JF, Voet T, Ponting CP, Belgard TG, Holt MG (2020) Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun 11: 1220. https://doi.org/10.1038/s41467-019-14198-8
- Pfau SJ, Langen UH, Fisher TM, Prakash I, Nagpurwala F, Lozoya RA, Lee W-CA, Wu Z, Gu C (2024) Characteristics of blood–brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells. Nat Neurosci 27: 1892–1903. https://doi.org/10.1038/s41593-024-01743-y
- Hu X, Zhang Y, Wang L, Ding J, Li M, Li H, Wu L, Zeng Z, Xia H (2022) Microglial activation in the motor cortex mediated NLRP3-related neuroinflammation and neuronal damage following spinal cord injury. Front Cell Neurosci 16: 956079. https://doi.org/10.3389/fncel.2022.956079
- Pottorf TS, Rotterman TM, McCallum WM, Haley-Johnson ZA, Alvarez FJ (2022) The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 11: 2083. https://doi.org/10.3390/cells11132083
- Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR (2011) Functional Interaction between Trace Amine-Associated Receptor 1 and Dopamine D2 Receptor. Mol Pharmacol 80: 416–425. https://doi.org/10.1124/mol.111.073304
- Wang Y, Lv H, Cui Q, Tu P, Jiang Y, Zeng K (2020) Isosibiricin inhibits microglial activation by targeting the dopamine D1/D2 receptor-dependent NLRP3/caspase-1 inflammasome pathway. Acta Pharmacol Sin 41: 173–180. https://doi.org/10.1038/s41401-019-0296-7
- Pike AF, Longhena F, Faustini G, Van Eik J-M, Gombert I, Herrebout MAC, Fayed MMHE, Sandre M, Varanita T, Teunissen CE, Hoozemans JJM, Bellucci A, Veerhuis R, Bubacco L (2022) Dopamine signaling modulates microglial NLRP3 inflammasome activation: implications for Parkinson’s disease. J Neuroinflammat 19: 50. https://doi.org/10.1186/s12974-022-02410-4
- Andoh M, Koyama R (2021) Microglia regulate synaptic development and plasticity. Development Neurobiol 81: 568–590. https://doi.org/10.1002/dneu.22814
- Naka A, Veit J, Shababo B, Chance RK, Risso D, Stafford D, Snyder B, Egladyous A, Chu D, Sridharan S, Mossing DP, Paninski L, Ngai J, Adesnik H (2019) Complementary networks of cortical somatostatin interneurons enforce layer specific control. eLife 8: e43696. https://doi.org/10.7554/elife.43696
- Sillerud LO, Yang Y, Yang LY, Duval KB, Thompson J, Yang Y (2020) Longitudinal monitoring of microglial/macrophage activation in ischemic rat brain using Iba-1-specific nanoparticle-enhanced magnetic resonance imaging. J Cereb Blood Flow Metab 40: S117–S133. https://doi.org/10.1177/0271678x20953913
- Wu D, Miyamoto O, Shibuya S, Okada M, Igawa H, Janjua NA, Norimatsu H, Itano T (2005) Different expression of macrophages and microglia in rat spinal cord contusion injury model at morphological and regional levels. Acta Med Okayama 59(4): 121–127. https://doi.org/10.18926/AMO/31950
- Nielson JL, Sears-Kraxberger I, Strong MK, Wong JK, Willenberg R, Steward O (2010) Unexpected Survival of Neurons of Origin of the Pyramidal Tract after Spinal Cord Injury. J Neurosci 30: 11516–11528. https://doi.org/10.1523/JNEUROSCI.1433-10.2010
- Nielson JL, Strong MK, Steward O (2011) A reassessment of whether cortical motor neurons die following spinal cord injury. J Comparat Neurol 519: 2852–2869. https://doi.org/10.1002/cne.22661
- Chai W, Chen J-Y, Zhang K-X, Zhao J-J (2021) Synaptic remodeling in mouse motor cortex after spinal cord injury. Neural Regen Res 16: 744. https://doi.org/10.4103/1673-5374.295346
- Solstrand Dahlberg L, Becerra L, Borsook D, Linnman C (2018) Brain changes after spinal cord injury, a quantitative meta-analysis and review. Neurosci Biobehav Rev 90: 272–293. https://doi.org/10.1016/j.neubiorev.2018.04.018
- Feng Z, Min L, Chen H, Deng W, Tan M, Liu H, Hou J (2021) Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol 43. https://doi.org/10.1016/j.redox.2021.101984
- Nakhjiri E, Roqanian S, Zangbar HS, Seyedi Vafaee M, Mohammadnejad D, Ahmadian S, Zamanzadeh S, Ehsani E, Shahabi P, Shahpasand K (2022) Spinal Cord Injury Causes Prominent Tau Pathology Associated with Brain Post-Injury Sequela. Mol Neurobiol 59: 4197–4208. https://doi.org/10.1007/s12035-022-02843-1
- Shi X, Swanson TL, Miner NB, Eshleman AJ, Janowsky A (2019) Activation of Trace Amine-Associated Receptor 1 Stimulates an Antiapoptotic Signal Cascade via Extracellular Signal-Regulated Kinase 1/2. Mol Pharmacol 96: 493–504. https://doi.org/10.1124/mol.119.116798
- Wu R, Liu J, Seaman R, Johnson B, Zhang Y, Li J-X (2021) The selective TAAR1 partial agonist RO5263397 promoted novelty recognition memory in mice. Psychopharmacology (Berl) 238: 3221–3228. https://doi.org/10.1007/s00213-021-05937-1
- Miner NB, Elmore JS, Baumann MH, Phillips TJ, Janowsky A (2017) Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity. Neurotoxicology 63: 57–69. https://doi.org/10.1016/j.neuro.2017.09.006
Қосымша файлдар


