A Comparison of Changes in the Portal Vein and Hepatic Artery during Portal Hypertension Induced by Common Bile Duct Ligation in Mice
- Authors: Pechkova M.G1, Kiryukhina O.O2, Borzykh A.A1, Tarasova O.S1,3
-
Affiliations:
- Institute of Biomedical Problems, Russian Academy of Sciences
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 111, No 11 (2025)
- Pages: 1780–1796
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0869-8139/article/view/355687
- DOI: https://doi.org/10.7868/S2658655X25110062
- ID: 355687
Cite item
Abstract
Keywords
About the authors
M. G Pechkova
Institute of Biomedical Problems, Russian Academy of Sciences
Email: marta.peckovva@gmail.com
Moscow, Russia
O. O Kiryukhina
Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia
A. A Borzykh
Institute of Biomedical Problems, Russian Academy of SciencesMoscow, Russia
O. S Tarasova
Institute of Biomedical Problems, Russian Academy of Sciences; Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
References
- Gracia-Sancho J, Marrone G, Fernández-Iglesias A (2019) Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 16: 221–234. https://doi.org/10.1038/s41575-018-0097-3
- Guixé-Muntet S, Quesada-Vázquez S, Gracia-Sancho J (2024) Pathophysiology and therapeutic options for cirrhotic portal hypertension. Lancet Gastroenterol Hepatol 9: 646–663. https://doi.org/10.1016/S2468-1253(23)00438-7
- Bolognesi M, Di Pascoli M, Verardo A, Gatta A (2014) Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J Gastroenterol 20: 2555–2563. https://doi.org/10.3748/wjg.v20.i10.2555
- Eipel C, Abshagen K, Yollmar B (2010) Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 16: 6046–6057. https://doi.org/10.3748/wjg.v16.i48.6046
- Malmyvist U (1994) Effects of long-term portal hypertension on structure, active force and content of contractile and structural proteins in smooth muscle of the rat portal vein. Acta Physiol Scand 150: 171–179. https://doi.org/10.1111/j.1748-1716.1994.tb09674.x
- Yoshimura T, Arita M, Kobayashi M (1988) Characteristics of contractile response of isolated portal veins from chronic portal hypertensive rats under altered levels of external K+, Ca2+, and norepinephrine concentrations: a comparison with normal Wistar rats. Jpn J Physiol 38: 459–478. https://doi.org/10.2170/jjphysiol.38.459
- Kamath PS, Tyce GM, Miller VM, Edwards BS, Rorie DK (1999) Endothelin-1 modulates intrahepatic resistance in a rat model of noncirrhotic portal hypertension. Hepatology 30: 401–407. https://doi.org/10.1002/hep.510300235
- Moeller M, Thonig A, Pohl S, Ripoll C, Zipprich A (2015) Hepatic arterial vasodilation is independent of portal hypertension in early stages of cirrhosis. PLoS One 10: e0121229. https://doi.org/10.1371/journal.pone.0121229
- Jain S, Jacobson KA (2021) Purinergic signaling in liver pathophysiology. Front Endocrinol 12: 718429. https://doi.org/10.3389/fendo.2021.718429
- Mata-Martinez E, Ramirez-Ledesma MG, Vázquez-Victorio G, Hernández-Munoz R, Díaz-Muñoz M, Vázquez-Cuevas FG (2024) Purinergic signaling in non-parenchymal liver cells. Int J Mol Sci 25: 9447. https://doi.org/10.3390/ijms25179447
- Li L, Duan M, Chen W, Jiang A, Li X, Yang J, Li Z (2017) The spleen in liver cirrhosis: revisiting an old enemy with novel targets. J Transl Med 15: 111. https://doi.org/10.1186/s12967-017-1214-8
- Matvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41: 19–26. https://doi.org/10.1161/01.res.41.1.19
- Michaelski K, Syriamen JL, Henze E, Kumpf J, Furukawa H, Kawate T (2020) The Cryo-EM structure of a pannexin 1 reveals unique motifs for ion selection and inhibition. eLife 9: e54670. https://doi.org/10.7554/eLife.54670
- Burrstock G, Ralevic V (2014) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66: 102–192. https://doi.org/10.1124/pr.113.008029
- Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362: 299–309. https://doi.org/10.1007/s002100000309
- Печкова МГ, Кирюхина ОО, Кондаков ИП, Тарасова ОС (2025) Исследование изменений сократительной активности портальной вены мыши при перевязке общего желчного про- тока. Авиакосм экол мед. Принята в печать. [Pechkova MG, Kiryukhina OO, Kondakov IP, Tarasova OS (2025) Study of changes in contractile activity of the mouse portal vein after common bile duct ligation. Aerospace Environment Med. Accepted for publicat. (In Russ)].
- Tag CG, Sauer-Lehnen S, Weiskirchen S, Borkham-Kamphorst E, Tolba RH, Tacke F, Weiskirch- en R (2015) Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp e52438. https://doi.org/10.3791/52438
- Cichoz-Lach H, Celiński K, Slomka M, Kasztelan-Szczerbińska B (2008) Pathophysiology of portal hypertension. J Physiol Pharmacol 59 Suppl 2: 231–238. https://doi.org/10.1002/9781119436812.ch51
- Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X (2024) The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 171: 116116. https://doi.org/10.1016/j.biopha.2023.116116
- Iwakiri Y (2014) Pathophysiology of portal hypertension. Clin Liver Dis 18: 281–291. https://doi.org/10.1016/j.cld.2013.12.001
- Geerts AM, Vanheule E, Praet M, Van Vlierbeephe H, De Vos M, Colle I (2008) Comparison of three research models of portal hypertension in mice: macroscopic, histological and portal pressure evaluation. Int J Exp Pathol 89: 251–263. https://doi.org/10.1111/j.1365-2613.2008.00597.x
- Malvany MJ, Hansen OK, Adikjaer C (1978) Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res 43(6): 854–864. https://doi.org/10.1161/01.res.43.6.854
- Arner A, Malmqvist U, Uvelius B (1985) Effects of Ca2+ on force-velocity characteristics of normal and hypertrophic smooth muscle of the rat portal vein. Acta Physiol Scand 124: 153–159. https://doi.org/10.1111/j.1748-1716.1985.tb00044.x
- Malmqvist U, Arner A (1988) Contractile properties during development of hypertrophy of the smooth muscle in the rat portal vein. Acta Physiol Scand 133: 49–61. https://doi.org/10.1111/j.1748-1716.1988.tb08380.x
- Yang W, Benjamin IS, Moore K, Portmann B, Alexander B (2003) The action of nitric oxide on hepatic haemodynamics during secondary biliary cirrhosis in the rat. Eur J Pharmacol 461: 41–48. https://doi.org/10.1016/S0014-2999(03)01301-3
- Yokoyama Y, Xu H, Kresge N, Keller S, Sarmadi AH, Baveja R, Clemens MG, Zhang JX (2003) Role of thromboxane A2 in early BDL-induced portal hypertension. Am J Physiol-Gastrointest Liver Physiol 284: G453–G460. https://doi.org/10.1152/ajpgi.00315.2002
- Johansson B (1976) Structural and functional changes in rat portal veins after experimental portal hypertension. Acta Physiol Scand 98: 381–383. https://doi.org/10.1111/j.1748-1716.1976.tb10324.x
- Gupta TK, Toruner M, Chung MK, Grossmann RJ (1998) Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatol 28: 926–931. https://doi.org/10.1002/hep.510280405
- Brandes RP, Kim D, Schmitz-Winnenthal FH, Amidi M, Gödecke A, Milsch A, Busse R (2000) Increased nitrovasodilator sensitivity in endothelial nitric oxide synthase knockout mice: role of soluble guanylyl cyclase. Hypertension 35: 231–236. https://doi.org/10.1161/01.hyp.35.1.231
- Penuela S, Gehi R, Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828: 15–22. https://doi.org/10.1016/j.bbamem.2012.01.017
- Crespo Yanguas S, da Silva TC, Pereira IVA, Maes M, Willebroids J, Shestopalov VI, Goes BM, Sayuri Nogueira M, Alves de Castro I, Romualdo GR, Barbisan LF, Gijbels E, Vinken M, Co-gliati B (2018) Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model. Arch Toxicol 92: 2607–2627. https://doi.org/10.1007/s00204-018-2255-3
- Lewis CJ, Evans RJ (2001) P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J Vasc Res 38: 332–340. https://doi.org/10.1159/000051064
- Harhun MI, Powstyan OV, Albert AP, Nichols CM (2014) ATP-evoked sustained vasoconstrictions mediated by heteromeric P2X1/4 receptors in cerebral arteries. Stroke 45: 2444–2450. https://doi.org/10.1161/STROKEAHA.114.005544
- Ulrich H, Glaser T, Thomas AP (2025) Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 21: 69–81. https://doi.org/10.1007/s11302-024-10044-9
- Sun X, Cárdenas A, Wu Y, Enjyaji K, Robson SC (2009) Vascular stasis, intestinal hemorrhage, and heightened vascular permeability complicate acute portal hypertension in cd39-null mice. Am J Physiol-Gastrointest Liver Physiol 297: G682–G690. https://doi.org/10.1152/ajpgi.90703.2008
- Zipprich A, Loureiro-Silva MR, Jain D, D’Silva I, Groszmann RJ (2008) Nitric oxide and vascular remodeling modulate hepatic arterial vascular resistance in the isolated perfused cirrhotic rat liver. J Hepatol 49: 739–745. https://doi.org/10.1016/j.jhep.2008.06.027
Supplementary files


