Morphological adrenal glands changes in rats with different individual-typological behavior features in the PTSD model after dalargin injections

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Morphological changes in the adrenal glands of male Wistar rats were studied after intramuscular injection of dalargin (a synthetic analog of leuenkephalin) in a model of post-traumatic stress disorders (PTSD). According to the results of testing in the T-maze and the elevated plus maze (ECL), the rats were divided into groups: active of the low anxiety (ALA), active of the high anxiety (AHA), passive of the low anxiety (PLA), passive of the high anxiety (PHA). In ALA rats after injection of dalargin in the PTSD model the thickness of the fascicular zone (zF) of the adrenal cortex increased by 14%, the area of nuclei in zF cells by 9.5%, and the area of the medulla by 21%. With the development of a PTSD-like state in AHA rats, the thickness of the zF increased by 10%. After injection of dalargin in the PTSD model the thickness of the zF was like control. With the development of a PTSD-like state in PLA rats, the thickness of the zF increased by 17%, and the area of zF cells nuclei, the area of the adrenal medulla and the area nucleis adrenal medulla are decrease by 10.5%, 41% and 8%, respectively. After injection of dalargin in the PTSD model area of the adrenal medullas nuclei decrease more by 7%. In PHA rats after injection of dalargin in the PTSD model the thickness zF increased by 23%. It was concluded that the effect of dalargin on the morphometric parameters of the adrenal glands in modeling PTSD is determined by individual typological features of behavior.

Full Text

Restricted Access

About the authors

O. G. Semenova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: SemenovaOG@infran.ru
Russian Federation, St. Petersburg

A. V. Vyushina

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: SemenovaOG@infran.ru
Russian Federation, St. Petersburg

A. V. Pritvorova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: SemenovaOG@infran.ru
Russian Federation, St. Petersburg

V. V. Rakitskaya

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: SemenovaOG@infran.ru
Russian Federation, St. Petersburg

N. E. Ordyan

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: SemenovaOG@infran.ru
Russian Federation, St. Petersburg

References

  1. Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA (2018) Single-prolonged stress: a review of two decades of progress in a rodent model of post-traumatic stress disorder. Front Psychiatry 9: 196. https://doi.org/10.3389/fpsyt.2018.00196
  2. Wilson CB, McLaughlin LD, Nair A, Ebenezer PJ, Dange R, Francis J (2013) Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PloS One 8(10): e76146. https://doi.org/10.1371/journal.pone.0076146
  3. Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, Carlezon Jr WA (2022) Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 18(5): 273–288. https://doi.org/10.1038/s41582-022-00635-8
  4. Шаляпина ВГ (2005) Кортиколиберин в регуляции приспособительного поведения и патогенезе постстрессорной психопатологии. В кн: Основы нейроэндокринологии. Шаляпина ВГ, Шабанов ПД (ред). Элби-СПб. 84–146. [Shalyapina VG (2005) Corticoliberin in the regulation of adaptive behavior and the pathogenesis of post-stress psychopathology. In: Bases of Neuroendocrinology. Eds: Shalyapina VG, Shabanov PD (Eds). Elbi-SPb. 84–146. (In Russ)].
  5. Миронова ВИ, Рыбникова ЕА (2008) Устойчивые модификации экспрессии нейрогормонов в гипоталамусе крыс в модели посттравматического стрессового растройства. Рос физиол журн им ИМ Сеченова 94(11): 1277–1284. [Mironova VI, Rybnikova EA (2008) Modifications of hypothalamic neurohormone expression in animal model of post-traumatic stress disorder. Russ J Physiol 94(11): 1277–1284. (In Russ)].
  6. Yehuda R (2009) Status of glucocorticoid alterations in post-traumatic stress disorder. Ann N Y Acad Sci 1179: 56–69. https://doi.org/10.1111/j.1749-6632.2009.04979.x
  7. Blum K, Modestino EJ, Baron D, Brewer R, Thanos P, Elman I, Badgaiyan RD, Downs BW, Bagchi D, McLaughlin Th, Bowirrat A, Roy AK, Gold MS (2021) Endorphinergic enhancement attenuation of post-traumatic stress disorder (PTSD) via activation of neuro-immunological function in the face of a viral pandemic. Curr Psychopharmacol 10: 86–97. https://doi.org/10.2174/2211556009999210104221215
  8. Лишманов ЮБ, Маслов ЛН, Нарыжная НВ, Пей Ж-М, Колар Ф, Жанг И, Портниченко АГ, Ванг Х (2012) Эндогенная опиоидная система как звено срочной и долговременной адаптации организма к экстремальным воздействиям. Перспективы клинического применения опиоидных пептидов. Вестник РАМН 6: 73–82. [Lishmanov YuB, Maslov LN, Naryzhnaya NV, Pei JM, Kolar F, Zhang Y, Portnichenko AG, Wang H (2012) Endogenous opioid system as a mediator of acute and long-term adaptation to stress. Prospects for clinical use of opioid peptides. Ann Russ Acad Med Sci 6: 73–82. (In Russ)].
  9. Ziegler CG, Mohn C, Lamounier-Zepter V, Rettori V, Bornstein SR, Krug AW, Ehrhart-Borns- tain M (2010) Expression and function of endocannabinoid receptors in the human adrenal cortex. Horm Metab Res 42: 88–92. https://dx.doi.org/10.1055/s-0029-1241860
  10. Niederhoffer N, Hansen HH, Fernandez-Ruiz JJ, Szabo B (2001) Effects of cannabinoids on adrenaline release from adrenal medullary cells. Br J Pharmacol 134(6): 1319–1327.
  11. Лихванцев ВВ, Гребенчиков ОА, Шапошников АА, Борисов КЮ, Черпаков РА, Шуль- гина НМ (2012) Фармакологическое прекондиционирование: роль опиоидных пептидов. Общая реаниматол 8(3): 51–54. [Likhvantsev VV, Grebenchikov OA, Shaposhnikov AA, Borisov Kyu, Cherpakov RA, Shulgina NV (2012) Pharmacological preconditioning: role of opioid peptides. Gener Reanimatol 8(3): 51–54. (In Russ)].
  12. Маслов ЛН, Мухомедзянов АВ, Лишманов ЮБ (2016) Роль эндогенной опиоидной системы в регуляции функционального состояния сердца. Рос физиол журн им ИМ Сеченова 102(9): 1017–1029. [Maslov LN, Mukhomedzyanov AV, Lishmanov YuB (2016) Role of endogenous opioid system in the regulation of functional state of heart. Russ J Physiol 102(9): 1017–1029. (In Russ)].
  13. Семенова ОГ, Вьюшина АВ, Притворова АВ, Ракицкая ВВ, Ордян НЭ (2021) Влияние даларгина на изменение тревожности у крыс с различными индивидуально-типологическими особенностями поведения в модели ПТСР. Журн высш нерв деят им ИП Павлова 71(5): 680–689. [Semenova OG, Vyushina AV, Pritvorova AV, Rakitskaya VV, Ordyan NE (2021) Effects of dalargin on anxiety changes in rats with different individual-typological behavioral features in the PTSD model. J Higher Nerv Activity 71(5): 680–689. (In Russ)]. https://doi.org/S0044467721050099
  14. Шаляпина ВГ, Вершинина ЕА, Ракицкая ВВ, Рыжова ЛЮ, Семенова МГ, Семенова ОГ (2006) Изменение приспособительного поведения активных и пассивных крыс Вистар в водно-иммерсионной модели депрессии. Журн высш нерв деят им ИП Павлова 56(4): 543–547. [Shalyapina VG, Vershinina EA, Rakitskaya VV, Rizhova LYu, Semenova MG, Semenova OG (2006) Alteration of active and passive Wistar rats adaptive behavior in water-immersion model of depression. J Higher Nerv Activity 56(4): 543–547. (In Russ)].
  15. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated pluz-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3): 149–167. https://doi.org/10.1016/0165-0270(85)90031-7
  16. Шаляпина ВГ, Ракицкая ВВ, Семенова МГ, Семенова ОГ (2006) Гормональная функция гипофизарно-адренокортикальной системы в патогенетической гетерогенности постстрессорных депрессий. Рос физиол журн им ИМ Сеченова 92(4): 480–487. [Shalyapina VG, Rakitskaya VV, Semenova MG, Semenova OG (2006) Hormonal function of the hypophyseal-adrenocortical system in the pathogenetic heterogeneity of post-stress depressions. Russ J Physiol 92(4): 480–487. (In Russ)].
  17. Vinson GP (2016) Functional zonation of the adult mammalian adrenal cortex. Front Neurosci 10: 238. https://doi.org/10.3389/fnins.2016.00238
  18. Hasenmajer V, Bonaventura I, Minnetti M, Sada V, Sbardella E, Isidori AM (2021) Non-canonical effects of ACTH: insights into adrenal insufficiency. Front Endocrinol 12: 701263. https://doi.org/10.3389/fendo.2021.701263
  19. Wellman K, Fu R, Baldwin A, Rege J, Murphy E, Rainey WE, Mukherjee N (2021) Transcriptomic response dynamics of human primary and immortalized adrenocortical cells to steroidogenic stimuli. Cells 10: 2376. https://doi.org/10.3390/cells10092376
  20. Jefferys D, Funder JW (1987) Glucocorticoids, adrenal medullary opioids, and the retention of a behavioral response after stress. Endocrinology 121(3): 1006–1009. https://doi.org/10.1210/endo-121-3-1006
  21. Vandael DHF, Marcantoni A, Carbone E (2015) Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells. Current Mol Pharmacol 8(2): 149–161.
  22. Laryea G, Schutz G, Muglia LJ (2013) Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Mol Endocrinol 27: 1655–1665. https://doi.org/10.1210/me.2013-1187
  23. Gjerstad JK, Lightman SL, Spiga F (2018) Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21: 403–416. https://doi.org/10.1080/10253890.2018.1470238
  24. Lefebvre H, Thomas M, Duparc C, Bertherat J, Louiset E (2016) Role of ACTH in the interactive/paracrine regulation of adrenal steroid secretion in physiological and pathophysiological conditions. Front Endocrinol 7: 98. https://doi.org/10.3389/fendo.2016.00098
  25. Shen WJ, Azhar S, Kraemer FB (2016) ACTH regulation of adrenal SR-B1. Front Endocrinol 7: 42. https://doi.org/10.3389/fendo.2016.00042
  26. Кондашевская МВ, Цейликман ВЭ, Манухина ЕБ, Дауни ГФ, Комелькова МВ, Лапшин МС, Самойлов ЕА, Попков ПН, Алилуев АВ, Васильева МВ, Курганов АС, Мальцева НВ, Цейликман ОБ (2017) Нарушение морфофункционального состояния надпочечников при экспериментальном посттравматическом стрессовом расстройстве у крыс: корреляция с поведенческими маркерами. Рос физиол журн им ИМ Сеченова 103(7): 808–818. [Kondashevskaya MV, Tseilikman VE, Manukhina EB, Downey HF, Komelkova MV, Lapshin MS, Samoylov EA, Popkov PN, Aliluev AV, Vasileva MV, Kurganov AS, Maltseva NV, Tseilikman OB (2017) Disorder in the morphology and function of adrenal glands in experimental post-traumatic stress disorder in rats: correlation with behavioral markers. Russ J Physiol 103(7): 808–818. (In Russ)].
  27. Wegener G, Mathe AA, Neumann ID (2012) Selectively bred rodents as models of depression and anxiety. Curr Topics Behav Neurosci (12): 139–187. https://doi.org/10.1007/7854-2011-192
  28. Tseilikman V, Komelkova M, Kondashevskaya MV, Manukhina E, Downey HF, Chereshnev V, Chereshneva M, Platkovskii P, Goryacheva A, Pashkov A, Fedotova Ju, Tseilikman O, Maltse- va N, Cherkasova O, Steenblock Ch, Bornstein S, Ettrich B, Chrousos GP, Ullmann E (2021) A rat model of post-traumatic stress syndrome causes phenotype-associated morphological changes and hypofunction of the adrenal gland. Int J Mol Sci 22: 13235. https://doi.org/10.3390/ijms222413235
  29. Ulrich-Lai YM, Figueiredo HF, Ostrander MM, Choi DC, Engeland WC, Herman JP (2006) Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab 291(5): E965–E973. https://doi.org/10.1152/ajpendo.00070.2006
  30. Szklarczyk K, Korostynski M, Cieslak PE, Wawrzczak-Bargiela A, Przewlocki R (2015) Opioid-dependent regulation of high and low fear responses in two inbred mouse strains. Behav Brain Res 292: 95–101. https://dx.doi.org/10.1016/j.bbr.2015.06.001
  31. Browne CA, Lucki I (2019) Targeting opioid dysregulation in depression for the development of novel therapeutics. Pharmacol Therap 201: 51–76. https://doi.org/10.1016/j.pharmthera.2019.04.009
  32. Coluzzi F, LeQuang JAK, Sciacchitano S, Scerpa MS, Rocco M, Pergolizzi J (2023) A closer look at opioid-induced adrenal insufficiency: a narrative review. Int J Mol Sci 24: 4575. https://doi.org/10.3390/ijms24054575
  33. Brockway DF, Crowley NA (2020) Turning the tides on neuropsychiatric diseases: the role of peptides in the prefrontal cortex. Front Behav Neurosci 14: 588400. https://doi.org/10.3389/fnbeh.2020.588400
  34. Dedic N, Chen A, Deussing JM (2018) The CRF family of neuropeptides and their receptors – mediators of the central stress response. Current Mol Pharmacol 11: 4–31. https://doi.org/10.2174/1874467210666170302104053
  35. Chen P, Lou S, Huang ZH, Wang Z, Shan QH, Wang Y, Jin Y, Zhang Z, Zhou JN (2020) Prefrontal cortex corticotropin-releasing factor neurons control behavioral style selection under challenging situations. Neuron 106: 301–315. https://doi.org/10.1016/j.neuron.2020.01.033

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.. 1. Scheme of experiment. Subgroup 1 – control, subgroup 2 – PTSD model + saline injections, subgroup 3 – PTSD model + dalargin injections.

Download (245KB)
3. Fig. 2. Adrenal cortex of rats from the ANT group, stained with iron hematoxylin using the Heidenhain method. I (a, d) – subgroup 1 (control); II (b, e) – subgroup 2 (PTSD model + saline injections); III (c, f) – subgroup 3 (PTSD model + dalargin injections); (a, b, c) – uv. 20; (d, e, f) – uv. 40.

Download (1MB)
4. Fig.3. Morphometric parameters of the adrenal glands of rats of the ANT group

Download (452KB)
5. Fig.4. Adrenal cortex of rats from the ABT group, stained with iron hematoxylin using the Heidenhain method. I (a, d) – subgroup 1 (control); II (b, e, g) – subgroup 2 (PTSD model + saline injections); III (c, f) – subgroup 3 (PTSD model + dalargin injections); (a, b, c) – uv. 20; (d, e, f) – uv. 40; (g) – uv. 100.

Download (1MB)
6. Fig.5. Morphometric parameters of the adrenal glands of rats from the AVT group

Download (457KB)
7. Fig.6. Adrenal cortex of rats from the PNT group, stained with iron hematoxylin using the Heidenhain method. I (a, d, g) – subgroup 1 (control); II (b, e) – subgroup 2 (PTSD model + saline injections); III (c, f) – subgroup 3 (PTSD model + dalargin injections); (a) – uv. 20; (b, c, d, g) – uv. 40; (e, f) – uv. 100.

Download (1MB)
8. Fig.7. Morphometric parameters of the adrenal glands of rats of the PNT group

Download (468KB)
9. Fig.8. Adrenal cortex of rats in the HTP group, stained with iron hematoxylin using the Heidenhain method. I (a, d) – subgroup 1 (control); II (b, e) – subgroup 2 (PTSD model + saline injections); III (c, f) – subgroup 3 (PTSD model + dalargin injections); (a, b) – uv. 20; (c, d, e) – uv. 40; (f) – uv. 100.

Download (1MB)
10. Fig.9. Morphometric parameters of the adrenal glands of rats in the HTP group

Download (450KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies