Transgenerational Effects of Ionizing Radiation on Different Animal Species (Literature Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper summarises data from studies of transgenerational effects of preconceptual exposure to ionising radiation (IR) of animals across various taxa. We have conducted search in PubMed, a database on medical and biomedical topics, using “transgeneration AND irradiation” as search terms, and, have additionally reviewed papers cited in the original documents. For the analysis we have selected 103 original papers, including 39 published in the last decade. The following living objects were used for studying transgenerational effects of ionizing radiation: Protostomes, including Nematoda, Annelida, Crustaceans and insects (21 papers), Deuterostomes, including fish, Amphibia, birds and mammals (82 papers). With regard to transgenerational effects in humans, we have reviewed 31 paper discussing effects of preconceptual exposure of parents to IR. Reported results come from the analysis of effects of ionizing radiation such as X-ray, gamma, neutrons (corpuscular), of incorporated radionuclides (239Pu, 238U, 235U, 241U, 85Fe), alongside data from radiation incidents and atomic bombings. Reported transgenerational effects of preconceptual exposure of parents to a wide range of doses of IR include teratogenic effects, prenatal death, different birth defects, reduced conception rates, both in vivo and in vitro, genomic instability, and mutations (excess deletions). Besides, an increased hazard of carcinogenic events resulting from mutational variance and instability of germline genome is reported, though it is shown to be relatively low in descendants of irradiated parents. Transgenerational effects of IR may play a significant role on reproductive health of animals and humans, particularly in radiation-contaminated regions. We suggest that future research incorporate an integrated approach to assess condition of genome across multiple genetic parameters, including detection of transgenerational genomic instability in descendants of irradiated parents.

About the authors

A. V. Panchenko

N.N. Petrov National Medical Research Center of Oncology

Email: ando_pan@mail.ru
ORCID iD: 0000-0002-5346-7646
St. Petersburg, Russia

I. S. Drachev

State Scientific Test Research Institute of Military Medicine

Email: dr.ingwar@mail.ru
ORCID iD: 0000-0002-1334-211X
St. Petersburg, Russia

E. B. Suprunova

State Scientific Test Research Institute of Military Medicine

Email: esyprynova@mail.ru
ORCID iD: 0009-0008-4356-8380
St. Petersburg, Russia

S. E. Pigarev

N.N. Petrov National Medical Research Center of Oncology

Email: spigarev@scioco.com
ORCID iD: 0000-0002-8171-4261
St. Petersburg, Russia

References

  1. Бак З., Александер П. Основы радиобиологии. М.: Издательство иностранной литературы, 1963. 500 с.
  2. Bohn G. Influence des rayons du radium sur les oeufs vierges et fécondes et sur les premiers stades du développement. Comp. Rend. Acad. Sci. Colon. 1903; 136:1085–1086.
  3. Котеров А.Н. Биологические и медицинские эффекты излучения с низкой ЛПЭ для различных диапазонов доз. Медицинская радиология и радиационная безопасность. 2015; 60(3):5–31.
  4. Lowe S.A. Ionizing radiation for maternal medical indications. Prenat. Diagn. 2020; 40(9):1150–1155. https://doi.org/10.1002/pd.5592
  5. Buisset-Goussen A., Goussen B., Della-Vedova C., Galas S., Adam-Guillermin C., Lecomte-Pradines C. Effects of chronic gamma irradiation: a multigenerational study using Caenorhabditis elegans. J. Environ. Radioact. 2014; 137:190–197. https://doi.org/10.1016/j.jenvrad.2014.07.014
  6. Min H., Sung M., Son M., Kawasaki I., Shim Y.H. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis. Biochem. Biophys. Res. Commun. 2017; 490(3):608–615. https://doi.org/10.1016/j.bbrc.2017.06.085
  7. Wang S., Meyer D.H., Schumacher B. Inheritance of paternal DNA damage by histone-mediated repair restriction. Nature. 2023; 613(7943):365–374. https://doi.org/10.1038/s41586-022-05544-w
  8. Hertel-Aas T., Brunborg G., Jaworska A., Salbu B., Oughton D.H. Effects of different gamma exposure regimes on reproduction in the earthworm Eisenia fetida (Oligochaeta). Sci. Total Environ. 2011; 412–413: 138–147. https://doi.org/10.1016/j.scitotenv.2011.09.037
  9. Sarapultseva E.I., Bychkovskaya I.B. Peculiar low-radiation effects as a risk factor: assessment of organism viability in model experiments with Daphnia magna. Int. J. Low. Radiat. 2010; 7(1):1. https://doi.org/10.1504/IJLR.2010.032766
  10. Sarapultseva E.I., Gorski A.I. Low-dose γ-irradiation affects the survival of exposed Daphnia and their offspring. Dose-Response. Publ. Int. Hormesis. Soc. 2013; 11(4):460–468. https://doi.org/10.2203/dose-response.12-033.Sarapultseva
  11. Сарапульцева Е.И., Мелехова О.П., Коссова Г.В., Иголкина Ю.В., Алексеева Н.В. Свободнорадикальные реакции при γ-облучении дафний in vivo в малых дозах. Радиационная биология. Радиоэкология. 2014; 54(3):305–308. https://doi.org/10.7868/S0869803114030138
  12. Sarapultseva E.I., Dubrova Y.E. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna. Environ. Res. 2016; 150: 138–143. https://doi.org/10.1016/j.envres.2016.05.046
  13. Parisot F., Bourdineaud J.P., Plaire D., AdamGuillermin C., Alonzo F. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations. Aquat Toxicol. 2015; 163:27–36. https://doi.org/10.1016/j.aquatox.2015.03.002
  14. Trijau M., Asselman J., Armant O., Adam-Guillermin C., De Schamphelaere K.A.C., Alonzo F. Transgenerational DNA Methylation Changes in Daphnia magna Exposed to Chronic γ Irradiation. Environ. Sci. Technol. 2018; 52(7):4331–4339. https://doi.org/10.1021/acs.est.7b05695
  15. Fuciarelli T.M., Rollo C.D. Trans-generational impacts of paternal irradiation in a cricket: Damage, lifehistory features and hormesis in F1 offspring. DoseResponse. 2020; 18(4):155932582098321. https://doi.org/10.1177/1559325820983214
  16. Fuciarelli T., Rollo C. Corrigendum to trans-generational impacts of paternal irradiation in a cricket: Damage, life-history features and hormesis in F1 offspring. Dose-Response. 2022; 20(4):155932582211347. https://doi.org/10.1177/15593258221134746
  17. Li X., Rollo C.D. Radiation induces stress and transgenerational impacts in the cricket, Acheta domesticus. Int. J. Radiat. Biol. 2022; 98(6):1098–1105. https://doi.org/10.1080/09553002.2021.1872816
  18. Hancock S., Vo N.T.K., Omar-Nazir L., et al. Transgenerational effects of historic radiation dose in pale grass blue butterflies around Fukushima following the Fukushima Dai-ichi Nuclear Power Plant meltdown accident. Environ. Res. 2019; 168:230–240. https://doi.org/10.1016/j.envres.2018.09.039
  19. Hiyama A., Nohara C., Kinjo S., et al. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci. Rep. 2012; 2(1):570. https://doi.org/10.1038/srep00570
  20. Sangsuwan T., Mannervik M., Haghdoost S. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage. Mutat. Res. Toxicol. Environ. Mutagen. 2022; 881:503523. https://doi.org/10.1016/j.mrgentox.2022.503523
  21. Yushkova E. Genetic mechanisms of formation of radiation-induced instability of the genome and its transgenerational effects in the descendants of chronically irradiated individuals of Drosophila melanogaster. Radiat. Environ. Biophys. 2020; 59(2):221–236.https://doi.org/10.1007/s00411-020-00833-2
  22. Yushkova E. Involvement of DNA repair genes and system of radiation-induced activation of transposons in formation of transgenerational effects. Front. Genet. 2020; 11:596947. https://doi.org/10.3389/fgene.2020.596947
  23. Yushkova E., Bashlykova L. Transgenerational effects in offspring of chronically irradiated populations of Drosophila melanogaster after the Chernobyl accident. Environ. Mol. Mutagen. 2021; 62(1):39–51. https://doi.org/10.1002/em.22416
  24. Yushkova E. Radiobiological features in offspring of natural populations of Drosophila melanogaster after Chernobyl accident. Environ. Mol. Mutagen. 2022; 63(2):84–97. https://doi.org/10.1002/em.22476
  25. Yushkova E. Contribution of transposable elements to transgenerational effects of chronic radioactive exposure of natural populations of Drosophila melanogaster living for a long time in the zone of the Chernobyl nuclear disaster. J. Environ. Radioact. 2022; 251–252:106945. https://doi.org/10.1016/j.jenvrad.2022.106945
  26. Anders A., Petry H., Fleming C., et al. Increasing melanoma incidence: Putatively Explainable by retrotransposons experimental contributions of the Xiphophorine Gordon-Kosswig melanoma system. Pigment Cell Res. 1994; 7(6):433–450. https://doi.org/10.1111/j.1600-0749.1994.tb00073.x
  27. Shimada A., Shima A. High incidence of mosaic mutations induced by irradiating paternal germ cells of the medaka fish, Oryzias latipes. Mutat. Res. Toxicol. Environ. Mutagen. 2001; 495(1–2):33–42. https://doi.org/10.1016/S1383-5718(01)00193-0
  28. Shimada A., Shima A. Transgenerational genomic instability as revealed by a somatic mutation assay using the medaka fish. Mutat. Res. Mol. Mech. Mutagen. 2004; 552(1–2):119–124. https://doi.org/10.1016/j.mrfmmm.2004.06.007
  29. Shimada A., Eguchi H., Yoshinaga S., Shima A. Doserate effect on transgenerational mutation frequencies in spermatogonial stem cells of the medaka fish. Radiat. Res. 2005; 163(1):112–114. https://doi.org/10.1667/RR3266
  30. Grygoryev D., Moskalenko O., Hinton T.G., Zimbrick J.D. DNA damage caused by chronic transgenerational exposure to low dose gamma radiation in medaka fish (Oryzias latipes). Radiat. Res. 2013; 180(3): 235–246. https://doi.org/10.1667/RR3190.1
  31. Smith R.W., Seymour C.B., Moccia R.D., Mothersill C.E. Irradiation of rainbow trout at early life stages results in trans-generational effects including the induction of a bystander effect in non-irradiated fish. Environ. Res. 2016; 145:26–38. https://doi.org/10.1016/j.envres.2015.11.019
  32. Hurem S., Gomes T., Brede D.A., et al. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. Environ. Res. 2017; 159:564–578. https://doi.org/10.1016/j.envres.2017.07.053
  33. Møller A.P., Mousseau T.A., De Lope F., Saino N. Elevated frequency of abnormalities in barn swallows from Chernobyl. Biol. Lett. 2007; 3(4):414–417. https://doi.org/10.1098/rsbl.2007.0136
  34. Bonisoli-Alquati A., Voris A., Mousseau T.A., Møller A.P., Saino N., Wyatt M.D. DNA damage in barn swallows (Hirundo rustica) from the Chernobyl region detected by use of the comet assay. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010; 151(3):271–277. https://doi.org/10.1016/j.cbpc.2009.11.006
  35. Omar-Nazir L., Shi X., Moller A., et al. Long-term effects of ionizing radiation after the Chernobyl accident: Possible contribution of historic dose. Environ. Res. 2018; 165:55–62. https://doi.org/10.1016/j.envres.2018.04.005
  36. Lüning K.G., Frölén H., Nilsson A. Genetic effects of 239Pu salt injections in male mice. Mutat. Res. 1976; 34(3):539–542. https://doi.org/10.1016/0027-5107(76)90229-3
  37. Nomura T. Parental exposure to X rays and chemicals induces heritable tumours and anomalies in mice. Nature. 1982; 296(5857):575–577. https://doi.org/10.1038/296575a0
  38. Vorobtsova I.E., Aliyakparova L.M., Anisimov V.N. Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat. Res. Mol. Mech. Mutagen. 1993; 287(2):207–216. https://doi.org/10.1016/0027-5107(93)90013-6
  39. Cattanach B.M., Patrick G., Papworth D., et al. Investigation of lung tumour induction in BALB/cJ mice following paternal X-irradiation. Int. J. Radiat. Biol. 1995; 67(5):607–615. https://doi.org/10.1080/09553009514550721
  40. Cattanach B.M., Papworth D., Patrick G., et al. Investigation of lung tumour induction in C3HHeH mice, with and without tumour promotion with urethane, following paternal X-irradiation. Mutat. Res. Mol. Mech. Mutagen. 1998; 403(1–2):1–12. https://doi.org/10.1016/S0027-5107(97)00322-9
  41. Luke G.A., Riches A.C., Bryant P.E. Genomic instability in haematopoietic cells of F1 generation mice of irradiated male parents. Mutagenesis. 1997; 12(3):147–152. https://doi.org/10.1093/mutage/12.3.147
  42. Lord B., Woolford L., Wang L., et al. Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br. J. Cancer. 1998; 78(3):301–311. https://doi.org/10.1038/bjc.1998.491
  43. Pils S., Müller W.U., Streffer C. Lethal and teratogenic effects in two successive generations of the HLG mouse strain after radiation exposure of zygotes — association with genomic instability? Mutat. Res. Mol. Mech. Mutagen. 1999; 429(1):85–92. https://doi.org/10.1016/S0027-5107(99)00101-3
  44. Mohr U. Possible carcinogenic effects of X-rays in a transgenerational study with CBA mice. Carcinogenesis. 1999; 20(2):325–332. https://doi.org/10.1093/carcin/20.2.325
  45. Carls N., Schiestl R.H. Effect of ionizing radiation on transgenerational appearance of pun reversions in mice. Carcinogenesis. 1999; 20(12): 2351–2354. https://doi.org/10.1093/carcin/20.12.2351
  46. Hoyes K.P., Lord B.I., McCann C., Hendry J.H., Morris I.D. Transgenerational effects of preconception paternal contamination with 55Fe. Radiat. Res. 2001; 156(5):488–494. https://doi.org/10.1667/0033-7587(2001)156[0488:TEOPPC]2.0.CO;2
  47. Baulch J.E., Raabe O.G., Wiley L.M. Heritable effects of paternal irradiation in mice on signaling protein kinase activities in F3 offspring. Mutagenesis. 2001; 16(1):17–23. https://doi.org/10.1093/mutage/16.1.17
  48. Barber R., Plumb M.A., Boulton E., Roux I., Dubrova Y.E. Elevated mutation rates in the germ line of firstand second-generation offspring of irradiated male mice. Proc. Natl. Acad. Sci. 2002; 99(10):6877–6882. https://doi.org/10.1073/pnas.102015399
  49. Dasenbrock C., Tillmann T., Ernst H., et al. Maternal effects and cancer risk in the progeny of mice exposed to X-rays before conception. Exp. Toxicol. Pathol. 2005; 56(6):351–360. https://doi.org/10.1016/j.etp.2004.12.001
  50. Ryabokon N.I., Goncharova R.I. Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout. Radiat. Environ. Biophys. 2006; 45(3):167–177. https://doi.org/10.1007/s00411-006-0054-3
  51. Barber R.C., Hickenbotham P., Hatch T., et al. Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene. 2006; 25(56): 7336–7342. https://doi.org/10.1038/sj.onc.1209723
  52. Koturbash I., Baker M., Loree J., et al. Epigenetic dysregulation underlies radiation-induced transgenerational genome instability in vivo. Int. J. Radiat. Oncol. 2006; 66(2):327–330. https://doi.org/10.1016/j.ijrobp.2006.06.012
  53. Hatch T., Derijck A.A.H.A., Black P.D., van der Heijden G.W., de Boer P., Dubrova Y.E. Maternal effects of the scid mutation on radiation-induced transgenerational instability in mice. Oncogene. 2007; 26(32):4720–4724. https://doi.org/10.1038/sj.onc.1210253
  54. Barber R.C., Hardwick R.J., Shanks M.E., et al. The effects of in utero irradiation on mutation induction and transgenerational instability in mice. Mutat. Res. Mol. Mech. Mutagen. 2009; 664(1–2):6–12. https://doi.org/10.1016/j.mrfmmm.2009.01.011
  55. Watanabe H., Toyoshima M., Ishikawa M., Kamiya K. Paternal monoenergetic neutron exposure results in abnormal sperm, and embryonal lethality and transgenerational tumorigenesis in mouse F1 offspring. Oncol. Rep. 2010; 23(5). https://doi.org/10.3892/or_00000771
  56. Adiga S.K., Upadhya D., Kalthur G., Bola Sadashiva S.R., Kumar P. Transgenerational changes in somatic and germ line genetic integrity of first-generation offspring derived from the DNA damaged sperm. Fertil. Steril. 2010; 93(8):2486–2490. https://doi.org/10.1016/j.fertnstert.2009.06.015
  57. Jacquet P., Buset J., Neefs M., et al. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains. Mutat. Res. Mol. Mech. Mutagen., 2010; 687(1–2):54–62. https://doi.org/10.1016/j.mrfmmm.2010.01.013
  58. Filkowski J.N., Ilnytskyy Y., Tamminga J., et al. Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis. 2010; 31(6):1110–1115. https://doi.org/10.1093/carcin/bgp300
  59. Miller A.C., Stewart M., Rivas R. Preconceptional paternal exposure to depleted uranium: Transmission of genetic damage to offspring. Health Phys. 2010; 99(3): 371–379. https://doi.org/10.1097/HP.0b013e3181cfe0dd
  60. Lomaeva M.G., Vasil’eva G.V., Fomenko L.A., Antipova V.N., Gaziev A.I., Bezlepkin V.G. Increased genomic instability in somatic cells of the progeny of female mice exposed to acute X-radiation in the preconceptional period. Russian Journal of Genetics. 2011; 47(10):1221–1226. https://doi.org/10.1134/S1022795411100115
  61. Mughal S.K., Myazin A.E., Zhavoronkov L.P., Rubanovich A.V., Dubrova Y.E. The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: A radiotherapy connection. PLoS ONE. 2012; 7(7):e41300. https://doi.org/10.1371/journal.pone.0041300
  62. Abouzeid Ali H.E., Barber R.C., Dubrova Y.E. The effects of maternal irradiation during adulthood on mutation induction and transgenerational instability in mice. Mutat. Res. Mol. Mech. Mutagen. 2012; 732(1–2): 21–25. https://doi.org/10.1016/j.mrfmmm.2012.01.003
  63. Paris L., Giardullo P., Leonardi S., et al. Transgenerational inheritance of enhanced susceptibility to radiation-induced medulloblastoma in newborn Ptch1+/– mice after paternal irradiation. Oncotarget. 2015; 6(34):36098–36112. https://doi.org/10.18632/oncotarget.5553
  64. Gomes A.M.G.F., Barber R.C., Dubrova Y.E. Paternal irradiation perturbs the expression of circadian genes in offspring. Mutat. Res. Mol. Mech. Mutagen. 2015; 775:33–37. https://doi.org/10.1016/j.mrfmmm.2015.03.007
  65. Ломаева М.Г., Фоменко Л.А., Васильева Г.В., Безлепкин В.Г. Тканеспецифические изменения уровня полиморфизма простых повторов в ДНК потомков разного пола, рожденных от облученных самцов или самок мышей. Радиационная биология. Радиоэкология. 2016; 56(2):149–155. https://doi.org/10.7868/S0869803116020089
  66. Asakawa J., Kodaira M., Miura A., et al. Genomewide deletion screening with the array CGH method in mouse offspring derived from irradiated spermatogonia indicates that mutagenic responses are highly variable among genes. Radiat. Res. 2016; 186(6):568. https://doi.org/10.1667/RR14402.1
  67. Satoh Y., Asakawa J., Nishimura M., et al. Characteristics of induced mutations in offspring derived from irradiated mouse spermatogonia and mature oocytes. Sci. Rep. 2020; 10(1):37. https://doi.org/10.1038/s41598-019-56881-2
  68. Suman S., Kumar S., Moon B.H., Fornace A.J., Kallakury B.V.S., Datta K. Increased transgenerational intestinal tumorigenesis in offspring of ionizing radiation exposed parent APC1638N/+ mice. J. Cancer. 2017; 8(10):1769–1773. https://doi.org/10.7150/jca.17803
  69. Ogura K., Ayabe Y., Harada C., Tanaka I.B., Tanaka S., Komura J. Increased frequency of copy number variations revealed by array comparative genomic hybridization in the offspring of male mice exposed to low dose-rate ionizing radiation. Int. J. Mol. Sci. 2021; 22(22):12437. https://doi.org/10.3390/ijms222212437
  70. Панченко А.В., Пигарев С.Е., Федорос Е.И. и др. Трансгенерационный канцерогенез, индуцированный уретаном, у потомков мышей-самцов BALB/c, подвергнутых общему равномерному гамма-облучению. Вопросы онкологии. 2023; 69(2):246–252.
  71. Tanaka I.B. 3rd, Tanaka S., Nakahira R., Komura J.I. Transgenerational effects on lifespan and pathology of paternal pre-conceptional exposure to continuous lowdose-rate gamma rays in C57BL/6J mice. Radiat. Res. 2024; 202(6):870–887. https://doi.org/10.1667/RADE-24-00093.1
  72. Seino R., Kubo H., Nishikubo K., Fukunaga H. Radiation-induced impacts on mitochondrial DNA and the transgenerational genomic instability. Environ. Int. 2025; 196:109315. https://doi.org/10.1016/j.envint.2025.109315.
  73. Kropácová K., Slovinská L., Miúrová E. Cytogenetic changes in the liver of progeny of irradiated male rats. J. Radiat. Res. (Tokyo). 2002; 43(2):125–125. https://doi.org/10.1269/jrr.43.125
  74. Bálentová S., Račeková E., Mišúrová E. Effect of paternal exposure to gamma rays on juvenile rat forebrain. Neurotoxicol. Teratol. 2007; 29(4):521–526. https://doi.org/10.1016/j.ntt.2007.03.063
  75. Bálentová S., Slovinská L., Misúrová E., Rybárová S., Adamkov M. Effect of paternal rat irradiation transmitted to the progeny during prenatal development. Folia Biol. (Praha). 2008; 54(5):151–156.
  76. Tamminga J., Koturbash I., Baker M., et al. Paternal cranial irradiation induces distant bystander DNA damage in the germline and leads to epigenetic alterations in the offspring. Cell Cycle. 2008; 7(9):1238–1245. https://doi.org/10.4161/cc.7.9.5806
  77. Camats N., García F., Parrilla J.J., Calaf J., Martín M., Caldés M.G. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens. Mutat. Res. Mol. Mech. Mutagen. 2008; 640(1–2):16–26. https://doi.org/10.1016/j.mrfmmm.2007.11.009
  78. Chumak A.A., Talko V.V., Atamanyuk N.P., et al. Transgeneration effects of N-stearoylethanolamine in irradiated rats. Probl. Radiac. Med. Radiobiol. 2017; 22: 270–281.
  79. Awa A.A., Bloom A.D., Yoshida M.C., Neriishi S., Archer P.G. Cytogenetic Study of the Offspring of Atom Bomb Survivors. Nature. 1968; 218(5139):367–368. https://doi.org/10.1038/218367a0
  80. Black D. Investigation of the possible increased incidence of cancer in west Cumbria. Report of the independent advisory group. London: HMSO, 1984. 104 p.
  81. Kinlen L.J., Clarke K., Balkwill A. Paternal preconceptional radiation exposure in the nuclear industry and leukaemia and non-Hodgkin’s lymphoma in young people in Scotland. BMJ. 1993; 306(6886):1153–1158. https://doi.org/10.1136/bmj.306.6886.1153
  82. McLaughlin J.R., King W.D., Anderson T.W., Clarke E.A., Ashmore J.P. Paternal radiation exposure and leukaemia in offspring: The Ontario case-control study. BMJ. 1993; 307(6910):959–966. https://doi.org/10.1136/bmj.307.6910.959
  83. Draper G.J., Little M.P., Sorahan T., et al. Cancer in the offspring of radiation workers: a record linkage study. BMJ. 1997; 315(7117):1181–1188.
  84. Boice J.D., Tawn E.J., Winther J.F., et al. Genetic ef­fects of radiotherapy for childhood cancer. Health Phys. 2003; 85(1):65–80. https://doi.org/10.1097/00004032-200307000-00013
  85. Parker L., Pearce M.S., Dickinson H.O., Aitkin M., Craft A.W. Stillbirths among offspring of male radiation workers at Sellafield nuclear reprocessing plant. The Lancet. 1999; 354(9188):1407–1414. https://doi.org/10.1016/S0140-6736(99)04138-0
  86. Doyle P., Maconochie N., Roman E., Davies G., Smith P.G., Beral V. Fetal death and congenital malformation in babies born to nuclear industry employees: report from the nuclear industry family study. The Lancet. 2000; 356(9238):1293–1299. https://doi.org/10.1016/S0140-6736(00)02812-9
  87. Little M.P. A comparison of the risk of stillbirth associated with paternal pre-conception irradiation in the Sellafield workforce with that of stillbirth and untoward pregnancy outcome among Japanese atomic bomb survivors. J. Radiol. Prot. 1999; 19(4):361–373. https://doi.org/10.1088/0952-4746/19/4/307
  88. Dubrova Y.E., Newmann R., Neil D.L., et al. Effects of radiation on children. Nature. 1996; 383(6597):226–226. https://doi.org/10.1038/383226b0
  89. Dubrova Y.E., Nesterov V.N., Krouchinsky N.G., et al. Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat. Res. 1997; 381(2):267–278. https://doi.org/10.1016/s0027-5107(97)00212-1
  90. Dubrova Y.E., Bersimbaev R.I., Djansugurova L.B., et al. Nuclear weapons tests and human germline mutation rate. Science. 2002; 295(5557):1037. https://doi.org/10.1126/science.1068102
  91. Kiuru A., Auvinen A., Luokkamäki M., et al. Hereditary minisatellite mutations among the offspring of Estonian Chernobyl cleanup workers. Radiat. Res. 2003; 159(5):651–655. https://doi.org/10.1667/0033-7587(2003)159[0651:HMMATO]2.0.CO;2
  92. Da Cruz A.D., de Melo e Silva D., da Silva C.C., et al. Microsatellite mutations in the offspring of irradiated parents 19 years after the Cesium-137 accident. Mutat. Res. Toxicol. Environ. Mutagen. 2008; 652(2):175–179. https://doi.org/10.1016/j.mrgentox.2008.02.002
  93. Livshits L.A., Malyarchuk S.G., Lukyanova E.M., et al. Children of Chernobyl cleanup workers do not show elevated rates of mutations in minisatellite alleles. Radiat. Res. 2001; 155(1):74–80. https://doi.org/10.1667/0033-7587(2001)155[0074:COCCWD]2.0.CO;2
  94. Kodaira M., Satoh C., Hiyama K., Toyama K. Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells. Am. J. Hum. Genet. 1995; 57(6):1275–1283.
  95. May C.A., Tamaki K., Neumann R., et al. Minisatellite mutation frequency in human sperm following radiotherapy. Mutat. Res. Mol. Mech. Mutagen. 2000; 453(1):67–75. https://doi.org/10.1016/S0027-5107(00)00085-3
  96. Tawn E.J., Whitehouse C.A., Winther J.F., et al. Chromosome analysis in childhood cancer survivors and their offspring — No evidence for radiotherapy-induced persistent genomic instability. Mutat. Res. Toxicol. Environ. Mutagen. 2005; 583(2):198–206. https://doi.org/10.1016/j.mrgentox.2005.03.007
  97. Friedman D.L., Whitton J., Leisenring W., et al. Subsequent neoplasms in 5-year survivors of childhood cancer: The childhood cancer survivor study. J. Natl. Cancer. Inst. 2010; 102(14):1083–1095. https://doi.org/10.1093/jnci/djq238
  98. Rees G.S., Trikic M.Z., Winther J.F., et al. A pilot study examining germline minisatellite mutations in the offspring of Danish childhood and adolescent cancer survivors treated with radiotherapy. Int. J. Radiat. Biol. 2006; 82(3):153–160. https://doi.org/10.1080/09553000600640538
  99. Hamada A., Takamura N., Meirmanov S., et al. No evidence of radiation risk for thyroid gland among schoolchildren around Semipalatinsk nuclear testing site. Endocr. J. 2003; 50(1):85–89. https://doi.org/10.1507/endocrj.50.85
  100. Сусков И.И., Агаджанян А.В., Кузьмина Н.С. и др. Проблема трансгенерационного феномена геномной нестабильности у больных детей разных возрастных групп после аварии на ЧАЭС. Радиационная биология. Радиоэкология. 2006; 46(4):466–474.
  101. Сусков И.И., Кузьмина Н.С., Сускова В.С., Агаджанян А.В., Рубанович А.В. Индивидуальные особенности трансгенерационной геномной нестабильности у детей ликвидаторов последствий аварии на ЧАЭС (цитогенетические и иммуногенетические показатели). Радиационная биология. Радиоэкология. 2008; 48(3):278–286.
  102. Аклеев А.В., Алещенко А.В., Готлиб В.Я. и др. Адаптивный ответ у потомков первого поколения, родители которых подверглись хроническому облучению. Радиационная биология. Радиоэкология. 2007; 47(5):550–557.
  103. Ахмадуллина Ю.Р., Аклеев А.В. Адаптивный ответ у потомков первого поколения, отцы которых подверглись хроническому радиационному воздействию. Вестник Челябинского государственного педагогического университета. 2013; (12–1): 174–182.
  104. Aghajanyan A., Suskov I. Transgenerational genomic instability in children of irradiated parents as a result of the Chernobyl Nuclear Accident. Mutat. Res. Mol. Mech. Mutagen. 2009; 671(1–2):52–57. https://doi.org/10.1016/j.mrfmmm.2009.08.012
  105. Agadzhanian A.V., Suskov I.I. Genomic instability in chidren born after the Chernobyl nuclear accident (in vivo and in vitro studies). Russian Journal of Genetics. 2010; 46(6):740–749. https://doi.org/10.1134/S1022795410060153
  106. Aghajanyan A., Kuzmina N., Sipyagyna A., Baleva L., Suskov I. Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation. Environ. Mol. Mutagen. 2011; 52(7):538–546. https://doi.org/10.1002/em.20655
  107. Безлепкин В.Г., Кириллова Е.Н., Захарова М.Л. и др. Отдаленные и трансгенерационные молекулярно-генетические эффекты пролонгированного воздействия ионизирующей радиации у работников предприятия ядерной промышленности. Радиационная биология. Радиоэкология. 2011; 51(1):20–32.
  108. Bazyka D., Hatch M., Gudzenko N., et al. Field study of the possible effect of parental irradiation on the germline of children born to cleanup workers and evacuees of the Chornobyl nuclear accident. Am. J. Epidemiol. 2020; 189(12):1451–1460. https://doi.org/10.1093/aje/kwaa095
  109. Jordan B. Les gènes des enfants de Tchernobyl: Chroniques génomiques. médecine/sciences. 2021; 37(8–9): 802–805. https://doi.org/10.1051/medsci/2021107
  110. Morgan W.F. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation? Oncogene. 2003; 22(45):7094–7099. https://doi.org/10.1038/sj.onc.1206992
  111. Limoli C.L., Kaplan M.I., Phillips J.W., Adair G.M., Morgan W.F. Differential induction of chromosomal instability by DNA strand-breaking agents. Cancer Res. 1997; 57(18):4048–4056.
  112. Dubrova Y.E., Hickenbotham P., Glen C.D., Monger K., Wong H., Barber R.C. Paternal exposure to ethylnitrosourea results in transgenerational genomic instability in mice. Environ. Mol. Mutagen. 2008; 49(4):308–311. https://doi.org/10.1002/em.20385
  113. Baulch J.E., Aypar U., Waters K.M., Yang A.J., Morgan W.F. Genetic and epigenetic changes in chromosomally stable and unstable progeny of irradiated cells. PLoS ONE. 2014; 9(9):e107722. https://doi.org/10.1371/journal.pone.0107722
  114. Huumonen K., Korkalainen M., Viluksela M., Lahtinen T., Naarala J., Juutilainen J. Role of microRNAs and DNA methyltransferases in transmitting induced genomic instability between cell generations. Front. Public. Health. 2014; 2. https://doi.org/10.3389/fpubh.2014.00139
  115. Tamminga J., Kovalchuk O. Role of DNA damage and epigenetic DNA methylation changes in radiation-induced genomic instability and bystander effects in germline in vivo. Curr. Mol. Pharmacol. 2011; 4(2): 115–125. https://doi.org/10.2174/1874467211104020115
  116. Lassi Z.S., Imam A.M., Dean S.V., Bhutta Z.A. Preconception care: caffeine, smoking, alcohol, drugs and other environmental chemical/radiation exposure. Reprod. Health. 2014; 11(Suppl 3):S6. https://doi.org/10.1186/1742-4755-11-S3-S6
  117. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann. ICRP. 2007; 37(2–4):9–34. https://doi.org/10.1016/j.icrp.2007.10.003
  118. Mikhalevich L.S., De Zwart F.A., Perepetskaya G.A., Chebotareva N.V., Mikhalevich E.A., Tates A.D. Radiation effects in lymphocytes of children living in a Chernobyl contaminated region of Belarus. Int. J. Radiat. Biol. 2000; 76(10):1377–1385. https://doi.org/10.1080/09553000050151655
  119. Nomura T., Nakajima H., Ryo H., et al. Transgenerational transmission of radiation- and chemically induced tumors and congenital anomalies in mice: studies of their possible relationship to induced chromosomal and molecular changes. Cytogenet. Genome Res. 2004; 104(1–4):252–260. https://doi.org/10.1159/000077499
  120. Воробцова И.Е. Трансгенерационная передача радиационно-индуцированной нестабильности генома и предрасположенности к канцерогенезу. Вопросы онкологии. 2008; 54(4): 490–493.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).