Biological markers of acute exposure during a radiation emergency and a radiation accident

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Effective medical care during a radiation emergency and a radiation accident (CRS and RA) requires rapid and effective primary triage of victims so that appropriate care can be provided to people at significant risk of severe acute radiation injury. Biomarkers can be effectively used at a later date after a radiation accident for retrospective dosimetry, clarifying the prognosis, treatment recommendations, and monitoring the effectiveness of therapy. Currently, there is a wide range of markers potentially suitable for bioindication and biodosimetry in conditions of CRS and RA, which indicate the presence of damage caused by ionizing radiation, for example, shifts in peripheral blood, chromosomal aberrations, increased or decreased expression of genes, proteins, metabolites, microRNAs, and are well detectable in the widest possible range of doses. An analysis of the literature data indicates that there is no universal biomarker for various radiation exposure scenarios. The use of complex biodosimetric systems based on various biological markers that complement each other makes it possible not only to more accurately determine the radiation dose, but also to assess the risks of developing early and long-term effects of acute exposure in participants in emergency and radiation emergencies.

About the authors

D. S. Oslina

South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia

Email: clinic@subi.su
ORCID iD: 0000-0003-4757-7969
Ozersk

G. V. Adamova

South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia

Email: clinic@subi.su
ORCID iD: 0000-0002-8776-4104
Ozersk

O. A. Sinelshchikova

South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia

Email: clinic@subi.su
ORCID iD: 0000-0001-6635-1717
Ozersk

T. V. Azizova

South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia

Email: clinic@subi.su
ORCID iD: 0000-0001-6954-2674
Ozersk

References

  1. IAEA-EPR-BIODOSIMETRY, 2011. Использование цитогенетической дозиметрии для обеспечения готовности и реагирования при радиационных аварийных ситуациях. Серия Аварийная готовность и реагирование. МАГАТЭ: Вена, 2014. 243 с. [IAEA-EPR-BIODOSIMETRY, 2011. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. IAEA: Vienna, 2011. 243 p.]
  2. Satyamitra M.M., Cassatt D.R., Molinar-Inglis O., Rios C.I, Taliaferro L.P., Winters T.A., DiCarlo A.L. The NIAID/RNCP Biodosimetry Program: An Overview. Cytogenet. Genome Res. 2023; 163(3–4):89–102. https://doi.org/10.1159/000534213
  3. Satyamitra M.M., DiCarlo A.L., Hollingsworth B.A., Winters T.A., Taliaferro L.P. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat Res., 2022; 197(5):514–532. https://doi.org/10.1667/RADE-21-00157.1
  4. Blakely W.F., Port M., Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. J. Radiol. Prot. 2021; 41(4). https://doi.org/10.1088/1361-6498/ac15df
  5. Simonian M., Shirasaki D., Lee V.S., et al. Proteomics identification of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy. Clin. Proteomics. 2018; 15:43. https://doi.org/10.1186/s12014-018-9217-x
  6. Singh V.K., Seed T.M., Cheema A.K. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert Rev. Mol. Diagn. 2021; 21(7):641–654. https://doi.org/10.1080/14737159.2021.1933448
  7. Aryankalayil M., Bylicky M.A., Chopra S., et al. Biomarkers for Biodosimetry and Their Role in Predicting Radiation Injury. Cytogenet. Genome Res. 2023; 163(3–4):103–109. https://doi.org/10.1159/000531444
  8. ICRU. Biodosimetry. ICRU: Bethesda, MD, USA, 2019; 26–45.
  9. Sproull M.T., Camphausen K.A., Koblentz G.D.. Biodosimetry: A Future Tool for Medical Management of Radiological Emergencies. Health Secur. 2017; 15(6):599–610. https://doi.org/10.1089/hs.2017.0050.
  10. Pernot E., Hall J., Baatout S., et al.. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res. 2012; 751(2):258–286. https://doi.org/10.1016/j.mrrev.2012.05.003
  11. Segaran R.C., Chan L.Y., Wang H., Sethi G., Tang F.R. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr. Med. Chem. 2021; 28(1):19–52. https://doi.org/10.2174/0929867327666200121122910
  12. Shakyawar S.K., Mishra N.K., Vellichirammal N.N., et al. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat. Res. 2023; 199(1):89–111. https://doi.org/10.1667/RADE-21–00187.1
  13. Blakely W.F., Port M., Ostheim P., Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res. 2024; 202(2):185–204. https://doi.org/10.1667/RADE-24-00121.1
  14. Vinnikov V., Belyakov O. Clinical Applications of Biological Dosimetry in Patients Exposed to Low Dose Radiation Due to Radiological, Imaging or Nuclear Medicine Procedures. Semin. Nucl. Med. 2022; 52(2):114–139. https://doi.org/10.1053/j.semnuclmed.2021.11.008
  15. Соловьев В.Ю., Самойлов А.С., Лебедев А.О., Седанкин М.К., Гудков Е.А. Использование информации о времени развития рвоты при первичной сортировке пострадавших в радиационных авариях. Медико-биологические и социальнопсихологические проблемы безопасности в чрезвычайных ситуациях. 2021; (1):14–7. [Soloviev V. Yu., Samoilov A.S., Lebedev A.O., Sedan kin M.K., Gudkov E.A. Application of time to emesis data for primary triage of radiation accident victims. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2021; (1):14–21. (In Russ.)]. https://doi.org/10.25016/2541-7487-2021-0-1-14-21
  16. Белых В.Г., Тимошевский В.А.. Медико-санитарное обеспечение населения при ликвидации последствий чрезвычайных ситуаций радиационной природы: учебно-методическое пособие для обучающихся по всем направлениям высшего образования. М.: ГБУ “НИИОЗММ ДЗМ”, 2022. 56 с. [Belyh V.G., Timoshevskij V.A.. Mediko-sanitarnoe obespechenie naselenija pri likvidacii posledstvij chrezvychajnyh situacij radiacionnoj prirody: uchebno-metodicheskoe posobie dlja obuchajushhihsja po vsem napravlenijam vysshego obrazovanija = Medical and sanitary provision of the population in the aftermath of radiation emergencies: an educational and methodological guide for students in all areas of higher education. Moscow: GBU “NIIOZMM DZM”, 2022. 56 p. (In Russ.)].
  17. Flynn D.F., Goans R.E. Nuclear Terrorism: triage and medical management of radiation and combined-injury casualties. Surgical Clinics. 2006; 86(3):601–35. https://doi.org/10.1016/j.suc.2006.03.005
  18. Седанкин М.К., Гудков Е.А., Соловьев В.Ю., Мершин Л.Ю. Особенности использования лимфоцитарного теста для биологической дозиметрии в ранние сроки после облучения. Медицина экстремальных ситуаций. 2023; 25(3):65–70. [Sedankin M.K., Gudkov E.A., Soloviev V. Yu., Mershin L. Yu. Features of using a lymphocyte test for biological dosimetry in the early period after exposure. Extreme Medicine. 2023; 25(3):65–70. (In Russ.)]. https://doi.org/10.47183/mes.2023.034
  19. Suspiro A., Prista J. Biomarkers of occupational exposure to anticancer agents: A minireview. Toxicology Letters. 2011; 207(1):42–52. https://doi.org/10.1016/j.toxlet.2011.08
  20. Chaurasia R.K., Shirsath K.B., Desai U.N., Bhat N.N., Sapra B.K. Establishment of in vitro Calibration Curve for 60Co-γ-rays Induced Phospho-53BP1 Foci, Rapid Biodosimetry and Initial Triage, and Comparative Evaluations With γH2AX and Cytogenetic Assays. Front. Public Health. 2022; 10:845200. https://doi.org/10.3389/fpubh.2022.845200
  21. Gnanasekaran T.S. Cytogenetic biological dosimetry assays: recent developments and updates. Radiat. Oncol. J. 2021; 39(3):159–166. https://doi.org/10.3857/roj.2021.00339
  22. Kaddour A., Colicchio B., Buron D., et al. Transmission of Induced Chromosomal Aberrations through Successive Mitotic Divisions in Human Lymphocytes after In Vitro and In Vivo Radiation. Sci. Rep. 2017; 7:3291. https://doi.org/10.1038/s41598-017-03198-7
  23. Sevan’kaev A., Khvostunov I., Lloyd D., et al. The suitability of FISH chromosome painting and ESR-spectroscopy of tooth enamel assays for retrospective dose reconstruction. J. Radiat. Res. 2006; 47: A75–80
  24. Amula S., Rao S.T., Venkatraman B., Kumar A.A.A. Translocation dose-response curve for 137Cs γ-rays: Dose validation at various dose rate and changing dose rate conditions. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2021; 870–871:503406. https://doi.org/10.1016/j.mrgentox.2021.503406
  25. Herate C., Sabatier L. Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation. Mutation Research/Reviews in Mutation Research. 2020; 783:108287. https://doi.org/10.1016/j.mrrev.2019.108287
  26. Grégoire E., Roy L., Buard V., et al. Twenty years of FISH-based translocation analysis for retrospective ionizing radiation biodosimetry. Int. J. Radiat. Biol. 2018; 94:248–258. https://doi.org/10.1080/09553002.2018.1427903.
  27. Tucker J.D., Cofield J., Matsumoto K., Ramsey M.J., Freeman D.C. Persistence of chromosome aberrations following acute radiation: I, PAINT translocations, dicentrics, rings, fragments, and insertions. Environ. Mol. Mutagen. 2005; 45:229–248. https://doi.org/10.1002/em.20090
  28. Tawn E.J., Whitehouse C.A. Persistence of translocation frequencies in blood lymphocytes following radiotherapy: implications for retrospective radiation biodosimetry. J. Radiol. Prot. Off. J. Soc. Radiol. Prot. 2003; 23:423–430. https://doi.org/10.1088/0952-4746/23/4/005
  29. Balajee A.S., Hadjidekova V. Retrospective cytogenetic analysis of unstable and stable chromosome aberrations in the victims of radiation accident in Bulgaria. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2021; 861:862503295. https://doi.org/10.1016/j.mrgentox.2020.503295
  30. Sotnik N.V., Osovets S.V, Scherthan H., Azizova T.V. mFISH analysis of chromosome aberrations in workers occupationally exposed to mixed radiation. Radiat. Environ. Biophys. 2014; 53(2):347–354. https://doi.org/10.1007/s00411-014-0536-7
  31. Сотник Н.В., Азизова Т.В., Жунтова Г.В. Биоиндикация внутреннего облучения при аварийном поступлении радионуклидов. Медицина экстренных ситуаций. 2019; 21(4):540–547. [Sotnik N.V., Azizova T.V., Zhuntova G.V. Bioindication of internal radiation exposure following accidental radionuclide intake. Extreme Medicine. 2019; 21(4):540–547. (In Russ.)].
  32. Malacarne I.T., Takeshita W.M., Viana M.B., Renno A.C.M., Ribeiro D.A. Is micronucleus assay a suitable method for biomonitoring children exposed to X-ray? A systematic review with meta-analysis. Int. J. Radiat. Biol. 2023; 99(10):1522–1530. https://doi.org/10.1080/09553002.2023.2194405
  33. Selvan T.G., Venkatachalam P. Potentials of cytokinesis blocked micronucleus assay in radiation triage and biological dosimetry. J. Genet. Eng. Biotechnol. 2024; 22(4):100409. https://doi.org/10.1016/j.jgeb.2024.100409
  34. Repin M., Pampou S., Garty G., Brenner D.J. RABiT-II: A Fully-Automated Micronucleus Assay System with Shortened Time to Result. Radiat. Res. 2019; 191(3):232–236. https://doi.org/10.1667/RR15215.1
  35. Okayasu R, Liu C. G1 Premature Chromosome Condensation (PCC) Assay. Methods Mol. Biol. 2019; 1984:31–38. https://doi.org/10.1007/978-1-4939-9432-8_4
  36. Anjali C.H., Ravi M. Applications of Premature Chromosome Condensation technique for genetic analysis. Toxicol. In Vitro. 2024; 94:105736. https://doi.org/10.1016/j.tiv.2023.105736
  37. Lamadrid A.I., García O., Delbos M., Voisin P., Roy L. PCC-ring induction in human lymphocytes exposed to gamma and neutron irradiation. J. Radiat. Res. 2007; 48(1):1–6. https://doi.org/10.1269/jrr.0625
  38. Sekaran S.G.T., Ricoul M., Brochard P., Herate C., Sabatier L. An alternative approach for the induction of premature chromosome condensation in human peripheral blood lymphocytes using mitotic Akodon cells. Int. J. Radiat. Biol. 2020; 96(2):214–219. https://doi.org/10.1080/09553002.2019.1625493
  39. González J.E., Romero I., Gregoire E., et al. Biodosimetry estimation using the ratio of the longest: shortest length in the premature chromosome condensation (PCC) method applying autocapture and automatic image analysis. J. Radiat. Res. 2014; 55(5):862–5. https://doi.org/10.1093/jrr/rru030
  40. Redon C.E., Nakamura A.J., Martin O.A., et al. Recent developments in the use of γ-H2AX as a quantitative DNA double-strand break biomarker. Aging. (Albany NY). 2011; 3:168–74
  41. Oberdoerffer P., Miller K.M. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin. Cell Dev. Biol. 2023; 135:59–72. https://doi.org/10.1016/j.semcdb.2022.03.011
  42. Zahnreich S., Ebersberger A., Kaina B., Schmidberger H. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiat. Res. 2015; 183(4):432–46. https://doi.org/10.1667/RR13911.1
  43. Sak A., Stuschke M. Use of γH2AX and other biomarkers of double-strand breaks during radiotherapy. Semin. Radiat. Oncol. 2010; 20(4):223–31. https://doi.org/10.1016/j.semradonc.2010.05.004
  44. Zahnreich S., Ebersberger A., Kaina B., Schmidberger H. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiation Research. 2015; 183(4):432–446. https://doi.org/10.1667/RR13911.1
  45. Raavi V., Surendran J., Karthik K., et al. Measurement of γ-H2AX foci, miRNA-101, and gene expression as a means to quantify radiation-absorbed dose in cancer patients who had undergone radiotherapy. Radiat. Environ. Biophys. 2019; 58(1):69–80. https://doi.org/10.1007/s00411-018-0767-0
  46. Jain V., Saini D., Soren D.C., et al. Non-linear dose response of DNA double strand breaks in response to chronic low dose radiation in individuals from high level natural radiation areas of Kerala coast. Genes Environ. 2023; 45(1):16. https://doi.org/10.1186/s41021-023-00273-6
  47. Changyan Xiao, Ningning He, Yang Liu, Yan Wang, Qiang Liu. Research progress on biodosimeters of ionizing radiation damage. Radiation Medicine and Protection. 2020; 1(3):127–132. https://doi.org/10.1016/j.radmp.2020.06.002
  48. López-Riego M., Płódowska M., Lis-Zajęcka M., et al. The DNA damage response to radiological imaging: from ROS and γH2AX foci induction to gene expression responses in vivo. Radiat. Environ. Biophys. 2023; 62(3):371–393. https://doi.org/10.1007/s00411-023-01033-4
  49. Raavi V., Perumal V., Paul F.D.S. Potential application of γ-H2AX as a biodosimetry tool for radiation triage. Mutat. Res. Rev. Mutat. Res. 2021; 787:108350. https://doi.org/10.1016/j.mrrev.2020.108350
  50. Anderson L., Henderson C., Adachi Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell Biol. 2001; 21(5):1719–29. https://doi.org/10.1128/MCB.21.5.1719-1729.2001
  51. Popp H.D., Brendel S., Hofmann W.K., Fabarius A. Immunofluorescence Microscopy of γH2AX and 53BP1 for Analyzing the Formation and Repair of DNA Double-strand Breaks. J. Vis. Exp. 2017; 129:56617. https://doi.org/10.3791/56617
  52. Bekker-Jensen S., Lukas C., Kitagawa R., et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 2006; 173(2):195–206. https://doi.org/10.1083/jcb.200510130
  53. Pernot E., Hall J., Baatout S., et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res. Rev. Mutat. Res. 2012; 751(2):258–286. https://doi.org/10.1016/j.mrrev.2012.05.003
  54. Fendler W., Malachowska B., Meghani K., et al. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci. Transl. Med. 2017; 9: eaal2408. https://doi.org/10.1126/scitranslmed.aal2408
  55. Acharya S.S., Fendler W., Watson J., et al. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury. Sci. Transl. Med. 2015; 7:287ra69. https://doi.org/10.1126/scitranslmed.aaa6593
  56. Małachowska B., Tomasik B., Stawiski K., et al. Circulating microRNAs as Biomarkers of Radiation Exposure: A Systematic Review and Meta-Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2019; 106(2):390–402. https://doi.org/10.1016/j.ijrobp.2019.10.028
  57. Xin Meng, Kechun Wen, Jingyang Zhao, et al. Microfluidic measurement of intracellular mRNA with a molecular beacon probe towards point-of-care radiation triage. Sensors and Diagnostics. 2024; 3(8):1344–1352. https://doi.org/10.1039/d4sd00079j
  58. Ancel L., Gabillot O., Szurewsky C. et al. MicroRNA blood signature for localized radiation injury. Sci. Rep. 2024; 14:2681. https://doi.org/10.1038/s41598-024-52258-2
  59. Statello L., Guo C.J., Chen L.L., Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021; 22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9
  60. Aryankalayil M.J., Chopra S., Levin J., et al. Radiation-induced long noncoding RNAs in a mouse model after whole-body irradiation. Radiat. Res. 2018; 189(3):251–63. https://doi.org/10.1667/RR14891.1
  61. Aryankalayil M.J., Martello S., Bylicky M.A., et al. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J. Transl. Med. 2021; 19(1):336. https://doi.org/10.1186/S12967-021-02998-W
  62. May J.M., Bylicky M., Chopra S., Coleman C.N., Aryankalayil M.J. Long and short non-coding RNA and radiation response: a review. Transl. Res. 2021; 233:162–79. https://doi.org/10.1016/j.trsl.2021.02.005
  63. Patil S., Linge A., Grosser M., et al. Development and validation of a 6-gene signature for the prognosis of loco-regional control in patients with HPV-negative locally advanced HNSCC treated by postoperative radio(chemo)therapy. Radiother. Oncol. 2022; 171:91–100. https://doi.org/10.1016/j.radonc.2022.04.006
  64. Choi J., Yoon Y.N., Kim N., et al. Predicting radiation resistance in breast cancer with expression status of phosphorylated S6K1. Sci. Rep. 2020; 10(1):641 https://doi.org/10.1038/s41598-020-57496-8
  65. Nie J., Peng C., Pei W., et al. A novel role of long non-coding RNAs in response to X-ray irradiation. Toxicol. In Vitro 2015; 30:536–44. https://doi.org/10.1016/j.tiv.2015.09.007
  66. Koch A., Reinhardt Ph., Elicin O. et al. Predictive biomarkers of radiotherapy-related dermatitis, xerostomia, mucositis and dysphagia in head and neck cancer: A systematic review. Radiother. Oncol. 2025; 203:110689. https://doi.org/10.1016/j.radonc.2024.110689
  67. Abend M., Amundson S.A., Badie C., et al. Interlaboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise. Sci. Rep. 2021; 11(1):9756. https://doi.org/10.1038/s41598-021-88403-4
  68. Abend M., Amundson S.A., Badie C., et al. RENEB inter-laboratory comparison 2021: the gene expression assay. Radiat. Res. 2023; 199(6):598–615. https://doi.org/10.1667/RADE-22-00206.1
  69. Agbenyegah S., Abend M., Atkinson M.J., et al. Impact of inter-individual variance in the expression of a radiation-responsive gene panel used for triage. Radiat. Res. 2018; 190(3):226–235. https://doi.org/10.1667/RR15013.1
  70. Schüle S., Hackenbroch C., Beer M., et al. Ex-vivo dose response characterization of the recently identified EDA2R gene after low level radiation exposures and comparison with FDXR gene expression and the γH2AX focus assay. Int. J. Radiat. Biol. 2023; 99(10):1584–1594. https://doi.org/ 10.1080/09553002.2023.2194402
  71. Sharma S., Rehan A., Dutta A. A data mining approach to identify key radioresponsive genes in mouse model of radiation-induced intestinal injury. Biomarkers. 2024; 29(8):505–517. https://doi.org/10.1080/1354750X.2024.2420196
  72. Ghandhi S.A., Shuryak I., Morton S.R., Amundson S.A., Brenner D.J. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci Rep. 2019; 9(1):18441. https://doi.org/10.1038/s41598-019-54967-5
  73. Port M., Ostheim P., Majewski M., et al. Rapid High-Throughput Diagnostic Triage after a Mass Radiation Exposure Event Using Early Gene Expression Changes. Radiat. Res. 2019; 192(2):208–218. https://doi.org/10.1667/RR15360.1
  74. Cruz-Garcia L., O'Brien G., Sipos B., et al. Generation of a Transcriptional Radiation Exposure Signature in Human Blood Using Long-Read Nanopore Sequencing. Radiat. Res. 2020; 193(2):143–154. https://doi.org/10.1667/RR15476.1
  75. Winters T.A., Taliaferro L.P., Satyamitra M.M. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat. Res. 2022; 197(5):554–558. https://doi.org/10.1667/RADE-21-00213.1
  76. Rudqvist N., Laiakis E.C., Ghandhi S.A., et al. Global gene expression response in mouse models of DNA repair deficiency after gamma irradiation. Radiat. Res. 2018; 189(4):337–44. https://doi.org/10.1667/RR14862.1
  77. Emwas A.H., Roy R., McKay R.T., et al. NMR spectroscopy for metabolomics research. Metabolites. 2019; 9(7):123. https://doi.org/ 10.3390/metabo9070123
  78. Letertre M.P.M., Giraudeau P., de Tullio P. Nuclear magnetic resonance spectroscopy in clinical metabolomics and personalized medicine: current challenges and perspectives. Front. Mol. Biosci. 2021; 8:698337. https://doi.org/ 10.3389/fmolb.2021.698337
  79. Singh V.K., Seed T.M., Cheema A.K. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert. Rev. Mol. Diagn. 2021; 21(7):641–54. https://doi.org/10.1080/14737159.2021.1933448
  80. Vicente E., Vujaskovic Z., Jackson I.L. A systematic review of metabolomic and lipidomic candidates for biomarkers in radiation injury. Metabolites. 2020; 10(6):259. https://doi.org/10.3390/metabo10060259
  81. Salah M., Osuga S., Nakahana M., et al. Elucidation of gastrointestinal dysfunction in response to irradiation using metabolomics. Biochem. Biophys. Rep. 2020; 23:100789. https://doi.org/10.1016/j.bbrep.2020.100789
  82. Laiakis E.C., Canadell M.P., Grilj V., et al. Serum lipidomic analysis from mixed neutron/X-ray radiation fields reveals a hyperlipidemic and pro-inflammatory phenotype. Sci. Rep. 2019; 9(1):4539. https://doi.org/10.1038/s41598-019-41083-7
  83. Laiakis E.C., Strawn S.J., Brenner D.J., Fornace A.J. Assessment of saliva as a potential biofluid for biodosimetry: a pilot metabolomics study in mice. Radiat. Res. 2016; 186(1):92–7. https://doi.org/10.1667/RR14433.1
  84. Chen Q., Zhao H., Xi C., et al. Targeted lipidomics-based study of radiation-induced metabolite profiles changes in plasma of total body irradiation cases. Int. J. Rad. Biol. 2024; 10:1481–1492. https://doi.org/10.1080/09553002.2024.2387054
  85. Pannkuk E.L., Laiakis E.C., Mak T.D., et al. A lipidomic and metabolomic serum signature from non-human primates exposed to ionizing radiation. Metabolomics. 2016; 12(5):80. https://doi.org/10.1007/s11306-016-1010-0
  86. Pannkuk E.L., Laiakis E.C., Authier S., et al. Targeted metabolomics of nonhuman primate serum after exposure to ionizing radiation: potential tools for high-throughput biodosimetry. RSC Adv. 2016; 6(56):51192–51202. https://doi.org/10.1039/C6RA07757A
  87. Сотник Н.В., Рыбкина В.Л., Азизова Т.В. Новые подходы в биологической дозиметрии: создание комплексных биодозиметрических систем (обзор зарубежной литературы). Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2018; (4):90–96. [Sotnik N.V., Rybkina V.L., Azizova T.V. New approaches to biological dosimetry: development of complex biodosimetric systems (review of foreign literature). Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2018; (4):90–96. (In Russ.)]. https://doi.org/10.25016/2541-7487-2018-0-4-90-96
  88. Cheema A.K., Byrum S.D., Sharma N.K., et al. Proteomic changes in mouse spleen after radiation-induced injury and its modulation by gamma-tocotrienol. Radiat. Res. 2018; 190:449–63. https://doi.org/10.1667/RR15008.1
  89. Ossetrova N.I., Sandgren D.J., Blakely W.F. Protein biomarkers for enhancement of radiation dose and injury assessment in nonhuman primate total-body irradiation model. Radiation Protection Dosimetry. 2014; 159(1–4):61–76. https://doi.org/10.1093/rpd/ncu165
  90. Hollingsworth B.A., Cassatt D.R., DiCarlo A.L., et al. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front. Pharmacol. 2021; 12:643283. https://doi.org/10.3389/fphar.2021.643283
  91. Goudarzi M., Mak T.D., Jacobs J.P., et al. An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis. Radiat. Res. 2016; 186(3):219–34. https://doi.org/10.1667/RR14306.1
  92. Pannkuk E., Laiakis E., Girgis M., et al. Temporal effects on radiation responses in nonhuman primates: identification of biofluid small molecule signatures by gas chromatography-mass spectrometry metabolomics. Metabolites. 2019; 9(5):98. https://doi.org/10.3390/metabo9050098
  93. Cai S., Zhao T., Xie L., et al. A feasibility study of gut microbiome and metabolites as biodosimeters for early triage of radiation induced intestinal injury in radiological events. Int. J. Radiat. Oncology Biology Physics. 2020; 108(3): e517. https://doi.org/10.1016/j.ijrobp.2020.07.1623
  94. Swarts S.G., Sidabras J.W., Grinberg O., et al. Developments in Biodosimetry Methods for Triage With a Focus on X-band Electron Paramagnetic Resonance In Vivo Fingernail Dosimetry. Health Phys. 2018; 115(1):140–150. https://doi.org/10.1097/HP.0000000000000874
  95. Swartz H.M., Flood A.B., Singh V.K., Swarts S.G. Scientific and Logistical Considerations When Screening for Radiation Risks by Using Biodosimetry Based on Biological Effects of Radiation Rather than Dose: The Need for Prior Measurements of Homogeneity and Distribution of Dose. Health Phys. 2020; 119(1):72–82. https://doi.org/10.1097/HP.0000000000001244
  96. Blakely W.F., Port M., Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. J. Radiol. Prot. 2021; 41(4). https://doi.org/10.1088/1361-6498/ac15df
  97. Arnautou P., Garnier G., Maillot J., et al. Management of acute radiation syndrome. Transfus. Clin. Biol. 2024; 31(4):253–259. https://doi.org/10.1016/j.tracli.2024.07.002
  98. Djomina E.A., Talko V.V. Cytogenetic indicators of acute radiation sickness (the chornobyl experience). Probl. Radiac. Med. Radiobiol. 2021; 26:398–409. https://doi.org/10.33145/2304-8336-2021-26-398-409
  99. Осовец С.В., Азизова Т.В., Василенко Е.К. Метод биологической дозиметрии для оценки аварийных доз внешнего облучения. Радиационная биология. Радиоэкология. 2017; 1:16–21. [Osovec S.V., Azizova T.V., Vasilenko E.K. Metod biologicheskoj dozimetrii dlja ocenki avarijnyh doz vneshnego obluchenija = Method of biological dosimetry for assessing emergency doses of external radiation. Radiation biology. Radioecology. 2017; 1: 16–21. (In Russ.)].
  100. Dainiak N., Albanese J., Kaushik M., et al. Сoncepts of operations for a us dosimetry and biodosimetry network. Radiat. Prot. Dosimetry. 2019; 186(1):130–138. https://doi.org/10.1093/rpd/ncy294
  101. Sholom S., McKeever S.W.S., Escalona M.B., Ryan T.L., Balajee A.S. A comparative validation of biodosimetry and physical dosimetry techniques for possible triage applications in emergency dosimetry. J. Radiol. Prot. 2022; 42(2). https://doi.org/10.1088/1361-6498/ac5815
  102. Blakely W.F., Port M., Ostheim P., Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat. Res. 2024; 202(2):185–204. https://doi.org/10.1667/RADE-24-00121.1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».