Biological markers of acute exposure during a radiation emergency and a radiation accident
- Authors: Oslina D.S.1, Adamova G.V.1, Sinelshchikova O.A.1, Azizova T.V.1
-
Affiliations:
- South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
- Issue: Vol 65, No 6 (2025)
- Pages: 565-580
- Section: General Radiobiology
- URL: https://journals.rcsi.science/0869-8031/article/view/366278
- DOI: https://doi.org/10.7868/S3034590125060014
- ID: 366278
Cite item
Abstract
About the authors
D. S. Oslina
South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
Email: clinic@subi.su
ORCID iD: 0000-0003-4757-7969
Ozersk
G. V. Adamova
South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
Email: clinic@subi.su
ORCID iD: 0000-0002-8776-4104
Ozersk
O. A. Sinelshchikova
South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
Email: clinic@subi.su
ORCID iD: 0000-0001-6635-1717
Ozersk
T. V. Azizova
South Urals Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
Email: clinic@subi.su
ORCID iD: 0000-0001-6954-2674
Ozersk
References
- IAEA-EPR-BIODOSIMETRY, 2011. Использование цитогенетической дозиметрии для обеспечения готовности и реагирования при радиационных аварийных ситуациях. Серия Аварийная готовность и реагирование. МАГАТЭ: Вена, 2014. 243 с. [IAEA-EPR-BIODOSIMETRY, 2011. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. IAEA: Vienna, 2011. 243 p.]
- Satyamitra M.M., Cassatt D.R., Molinar-Inglis O., Rios C.I, Taliaferro L.P., Winters T.A., DiCarlo A.L. The NIAID/RNCP Biodosimetry Program: An Overview. Cytogenet. Genome Res. 2023; 163(3–4):89–102. https://doi.org/10.1159/000534213
- Satyamitra M.M., DiCarlo A.L., Hollingsworth B.A., Winters T.A., Taliaferro L.P. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat Res., 2022; 197(5):514–532. https://doi.org/10.1667/RADE-21-00157.1
- Blakely W.F., Port M., Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. J. Radiol. Prot. 2021; 41(4). https://doi.org/10.1088/1361-6498/ac15df
- Simonian M., Shirasaki D., Lee V.S., et al. Proteomics identification of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy. Clin. Proteomics. 2018; 15:43. https://doi.org/10.1186/s12014-018-9217-x
- Singh V.K., Seed T.M., Cheema A.K. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert Rev. Mol. Diagn. 2021; 21(7):641–654. https://doi.org/10.1080/14737159.2021.1933448
- Aryankalayil M., Bylicky M.A., Chopra S., et al. Biomarkers for Biodosimetry and Their Role in Predicting Radiation Injury. Cytogenet. Genome Res. 2023; 163(3–4):103–109. https://doi.org/10.1159/000531444
- ICRU. Biodosimetry. ICRU: Bethesda, MD, USA, 2019; 26–45.
- Sproull M.T., Camphausen K.A., Koblentz G.D.. Biodosimetry: A Future Tool for Medical Management of Radiological Emergencies. Health Secur. 2017; 15(6):599–610. https://doi.org/10.1089/hs.2017.0050.
- Pernot E., Hall J., Baatout S., et al.. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res. 2012; 751(2):258–286. https://doi.org/10.1016/j.mrrev.2012.05.003
- Segaran R.C., Chan L.Y., Wang H., Sethi G., Tang F.R. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr. Med. Chem. 2021; 28(1):19–52. https://doi.org/10.2174/0929867327666200121122910
- Shakyawar S.K., Mishra N.K., Vellichirammal N.N., et al. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat. Res. 2023; 199(1):89–111. https://doi.org/10.1667/RADE-21–00187.1
- Blakely W.F., Port M., Ostheim P., Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res. 2024; 202(2):185–204. https://doi.org/10.1667/RADE-24-00121.1
- Vinnikov V., Belyakov O. Clinical Applications of Biological Dosimetry in Patients Exposed to Low Dose Radiation Due to Radiological, Imaging or Nuclear Medicine Procedures. Semin. Nucl. Med. 2022; 52(2):114–139. https://doi.org/10.1053/j.semnuclmed.2021.11.008
- Соловьев В.Ю., Самойлов А.С., Лебедев А.О., Седанкин М.К., Гудков Е.А. Использование информации о времени развития рвоты при первичной сортировке пострадавших в радиационных авариях. Медико-биологические и социальнопсихологические проблемы безопасности в чрезвычайных ситуациях. 2021; (1):14–7. [Soloviev V. Yu., Samoilov A.S., Lebedev A.O., Sedan kin M.K., Gudkov E.A. Application of time to emesis data for primary triage of radiation accident victims. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2021; (1):14–21. (In Russ.)]. https://doi.org/10.25016/2541-7487-2021-0-1-14-21
- Белых В.Г., Тимошевский В.А.. Медико-санитарное обеспечение населения при ликвидации последствий чрезвычайных ситуаций радиационной природы: учебно-методическое пособие для обучающихся по всем направлениям высшего образования. М.: ГБУ “НИИОЗММ ДЗМ”, 2022. 56 с. [Belyh V.G., Timoshevskij V.A.. Mediko-sanitarnoe obespechenie naselenija pri likvidacii posledstvij chrezvychajnyh situacij radiacionnoj prirody: uchebno-metodicheskoe posobie dlja obuchajushhihsja po vsem napravlenijam vysshego obrazovanija = Medical and sanitary provision of the population in the aftermath of radiation emergencies: an educational and methodological guide for students in all areas of higher education. Moscow: GBU “NIIOZMM DZM”, 2022. 56 p. (In Russ.)].
- Flynn D.F., Goans R.E. Nuclear Terrorism: triage and medical management of radiation and combined-injury casualties. Surgical Clinics. 2006; 86(3):601–35. https://doi.org/10.1016/j.suc.2006.03.005
- Седанкин М.К., Гудков Е.А., Соловьев В.Ю., Мершин Л.Ю. Особенности использования лимфоцитарного теста для биологической дозиметрии в ранние сроки после облучения. Медицина экстремальных ситуаций. 2023; 25(3):65–70. [Sedankin M.K., Gudkov E.A., Soloviev V. Yu., Mershin L. Yu. Features of using a lymphocyte test for biological dosimetry in the early period after exposure. Extreme Medicine. 2023; 25(3):65–70. (In Russ.)]. https://doi.org/10.47183/mes.2023.034
- Suspiro A., Prista J. Biomarkers of occupational exposure to anticancer agents: A minireview. Toxicology Letters. 2011; 207(1):42–52. https://doi.org/10.1016/j.toxlet.2011.08
- Chaurasia R.K., Shirsath K.B., Desai U.N., Bhat N.N., Sapra B.K. Establishment of in vitro Calibration Curve for 60Co-γ-rays Induced Phospho-53BP1 Foci, Rapid Biodosimetry and Initial Triage, and Comparative Evaluations With γH2AX and Cytogenetic Assays. Front. Public Health. 2022; 10:845200. https://doi.org/10.3389/fpubh.2022.845200
- Gnanasekaran T.S. Cytogenetic biological dosimetry assays: recent developments and updates. Radiat. Oncol. J. 2021; 39(3):159–166. https://doi.org/10.3857/roj.2021.00339
- Kaddour A., Colicchio B., Buron D., et al. Transmission of Induced Chromosomal Aberrations through Successive Mitotic Divisions in Human Lymphocytes after In Vitro and In Vivo Radiation. Sci. Rep. 2017; 7:3291. https://doi.org/10.1038/s41598-017-03198-7
- Sevan’kaev A., Khvostunov I., Lloyd D., et al. The suitability of FISH chromosome painting and ESR-spectroscopy of tooth enamel assays for retrospective dose reconstruction. J. Radiat. Res. 2006; 47: A75–80
- Amula S., Rao S.T., Venkatraman B., Kumar A.A.A. Translocation dose-response curve for 137Cs γ-rays: Dose validation at various dose rate and changing dose rate conditions. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2021; 870–871:503406. https://doi.org/10.1016/j.mrgentox.2021.503406
- Herate C., Sabatier L. Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation. Mutation Research/Reviews in Mutation Research. 2020; 783:108287. https://doi.org/10.1016/j.mrrev.2019.108287
- Grégoire E., Roy L., Buard V., et al. Twenty years of FISH-based translocation analysis for retrospective ionizing radiation biodosimetry. Int. J. Radiat. Biol. 2018; 94:248–258. https://doi.org/10.1080/09553002.2018.1427903.
- Tucker J.D., Cofield J., Matsumoto K., Ramsey M.J., Freeman D.C. Persistence of chromosome aberrations following acute radiation: I, PAINT translocations, dicentrics, rings, fragments, and insertions. Environ. Mol. Mutagen. 2005; 45:229–248. https://doi.org/10.1002/em.20090
- Tawn E.J., Whitehouse C.A. Persistence of translocation frequencies in blood lymphocytes following radiotherapy: implications for retrospective radiation biodosimetry. J. Radiol. Prot. Off. J. Soc. Radiol. Prot. 2003; 23:423–430. https://doi.org/10.1088/0952-4746/23/4/005
- Balajee A.S., Hadjidekova V. Retrospective cytogenetic analysis of unstable and stable chromosome aberrations in the victims of radiation accident in Bulgaria. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2021; 861:862503295. https://doi.org/10.1016/j.mrgentox.2020.503295
- Sotnik N.V., Osovets S.V, Scherthan H., Azizova T.V. mFISH analysis of chromosome aberrations in workers occupationally exposed to mixed radiation. Radiat. Environ. Biophys. 2014; 53(2):347–354. https://doi.org/10.1007/s00411-014-0536-7
- Сотник Н.В., Азизова Т.В., Жунтова Г.В. Биоиндикация внутреннего облучения при аварийном поступлении радионуклидов. Медицина экстренных ситуаций. 2019; 21(4):540–547. [Sotnik N.V., Azizova T.V., Zhuntova G.V. Bioindication of internal radiation exposure following accidental radionuclide intake. Extreme Medicine. 2019; 21(4):540–547. (In Russ.)].
- Malacarne I.T., Takeshita W.M., Viana M.B., Renno A.C.M., Ribeiro D.A. Is micronucleus assay a suitable method for biomonitoring children exposed to X-ray? A systematic review with meta-analysis. Int. J. Radiat. Biol. 2023; 99(10):1522–1530. https://doi.org/10.1080/09553002.2023.2194405
- Selvan T.G., Venkatachalam P. Potentials of cytokinesis blocked micronucleus assay in radiation triage and biological dosimetry. J. Genet. Eng. Biotechnol. 2024; 22(4):100409. https://doi.org/10.1016/j.jgeb.2024.100409
- Repin M., Pampou S., Garty G., Brenner D.J. RABiT-II: A Fully-Automated Micronucleus Assay System with Shortened Time to Result. Radiat. Res. 2019; 191(3):232–236. https://doi.org/10.1667/RR15215.1
- Okayasu R, Liu C. G1 Premature Chromosome Condensation (PCC) Assay. Methods Mol. Biol. 2019; 1984:31–38. https://doi.org/10.1007/978-1-4939-9432-8_4
- Anjali C.H., Ravi M. Applications of Premature Chromosome Condensation technique for genetic analysis. Toxicol. In Vitro. 2024; 94:105736. https://doi.org/10.1016/j.tiv.2023.105736
- Lamadrid A.I., García O., Delbos M., Voisin P., Roy L. PCC-ring induction in human lymphocytes exposed to gamma and neutron irradiation. J. Radiat. Res. 2007; 48(1):1–6. https://doi.org/10.1269/jrr.0625
- Sekaran S.G.T., Ricoul M., Brochard P., Herate C., Sabatier L. An alternative approach for the induction of premature chromosome condensation in human peripheral blood lymphocytes using mitotic Akodon cells. Int. J. Radiat. Biol. 2020; 96(2):214–219. https://doi.org/10.1080/09553002.2019.1625493
- González J.E., Romero I., Gregoire E., et al. Biodosimetry estimation using the ratio of the longest: shortest length in the premature chromosome condensation (PCC) method applying autocapture and automatic image analysis. J. Radiat. Res. 2014; 55(5):862–5. https://doi.org/10.1093/jrr/rru030
- Redon C.E., Nakamura A.J., Martin O.A., et al. Recent developments in the use of γ-H2AX as a quantitative DNA double-strand break biomarker. Aging. (Albany NY). 2011; 3:168–74
- Oberdoerffer P., Miller K.M. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin. Cell Dev. Biol. 2023; 135:59–72. https://doi.org/10.1016/j.semcdb.2022.03.011
- Zahnreich S., Ebersberger A., Kaina B., Schmidberger H. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiat. Res. 2015; 183(4):432–46. https://doi.org/10.1667/RR13911.1
- Sak A., Stuschke M. Use of γH2AX and other biomarkers of double-strand breaks during radiotherapy. Semin. Radiat. Oncol. 2010; 20(4):223–31. https://doi.org/10.1016/j.semradonc.2010.05.004
- Zahnreich S., Ebersberger A., Kaina B., Schmidberger H. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiation Research. 2015; 183(4):432–446. https://doi.org/10.1667/RR13911.1
- Raavi V., Surendran J., Karthik K., et al. Measurement of γ-H2AX foci, miRNA-101, and gene expression as a means to quantify radiation-absorbed dose in cancer patients who had undergone radiotherapy. Radiat. Environ. Biophys. 2019; 58(1):69–80. https://doi.org/10.1007/s00411-018-0767-0
- Jain V., Saini D., Soren D.C., et al. Non-linear dose response of DNA double strand breaks in response to chronic low dose radiation in individuals from high level natural radiation areas of Kerala coast. Genes Environ. 2023; 45(1):16. https://doi.org/10.1186/s41021-023-00273-6
- Changyan Xiao, Ningning He, Yang Liu, Yan Wang, Qiang Liu. Research progress on biodosimeters of ionizing radiation damage. Radiation Medicine and Protection. 2020; 1(3):127–132. https://doi.org/10.1016/j.radmp.2020.06.002
- López-Riego M., Płódowska M., Lis-Zajęcka M., et al. The DNA damage response to radiological imaging: from ROS and γH2AX foci induction to gene expression responses in vivo. Radiat. Environ. Biophys. 2023; 62(3):371–393. https://doi.org/10.1007/s00411-023-01033-4
- Raavi V., Perumal V., Paul F.D.S. Potential application of γ-H2AX as a biodosimetry tool for radiation triage. Mutat. Res. Rev. Mutat. Res. 2021; 787:108350. https://doi.org/10.1016/j.mrrev.2020.108350
- Anderson L., Henderson C., Adachi Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell Biol. 2001; 21(5):1719–29. https://doi.org/10.1128/MCB.21.5.1719-1729.2001
- Popp H.D., Brendel S., Hofmann W.K., Fabarius A. Immunofluorescence Microscopy of γH2AX and 53BP1 for Analyzing the Formation and Repair of DNA Double-strand Breaks. J. Vis. Exp. 2017; 129:56617. https://doi.org/10.3791/56617
- Bekker-Jensen S., Lukas C., Kitagawa R., et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 2006; 173(2):195–206. https://doi.org/10.1083/jcb.200510130
- Pernot E., Hall J., Baatout S., et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res. Rev. Mutat. Res. 2012; 751(2):258–286. https://doi.org/10.1016/j.mrrev.2012.05.003
- Fendler W., Malachowska B., Meghani K., et al. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci. Transl. Med. 2017; 9: eaal2408. https://doi.org/10.1126/scitranslmed.aal2408
- Acharya S.S., Fendler W., Watson J., et al. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury. Sci. Transl. Med. 2015; 7:287ra69. https://doi.org/10.1126/scitranslmed.aaa6593
- Małachowska B., Tomasik B., Stawiski K., et al. Circulating microRNAs as Biomarkers of Radiation Exposure: A Systematic Review and Meta-Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2019; 106(2):390–402. https://doi.org/10.1016/j.ijrobp.2019.10.028
- Xin Meng, Kechun Wen, Jingyang Zhao, et al. Microfluidic measurement of intracellular mRNA with a molecular beacon probe towards point-of-care radiation triage. Sensors and Diagnostics. 2024; 3(8):1344–1352. https://doi.org/10.1039/d4sd00079j
- Ancel L., Gabillot O., Szurewsky C. et al. MicroRNA blood signature for localized radiation injury. Sci. Rep. 2024; 14:2681. https://doi.org/10.1038/s41598-024-52258-2
- Statello L., Guo C.J., Chen L.L., Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021; 22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9
- Aryankalayil M.J., Chopra S., Levin J., et al. Radiation-induced long noncoding RNAs in a mouse model after whole-body irradiation. Radiat. Res. 2018; 189(3):251–63. https://doi.org/10.1667/RR14891.1
- Aryankalayil M.J., Martello S., Bylicky M.A., et al. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J. Transl. Med. 2021; 19(1):336. https://doi.org/10.1186/S12967-021-02998-W
- May J.M., Bylicky M., Chopra S., Coleman C.N., Aryankalayil M.J. Long and short non-coding RNA and radiation response: a review. Transl. Res. 2021; 233:162–79. https://doi.org/10.1016/j.trsl.2021.02.005
- Patil S., Linge A., Grosser M., et al. Development and validation of a 6-gene signature for the prognosis of loco-regional control in patients with HPV-negative locally advanced HNSCC treated by postoperative radio(chemo)therapy. Radiother. Oncol. 2022; 171:91–100. https://doi.org/10.1016/j.radonc.2022.04.006
- Choi J., Yoon Y.N., Kim N., et al. Predicting radiation resistance in breast cancer with expression status of phosphorylated S6K1. Sci. Rep. 2020; 10(1):641 https://doi.org/10.1038/s41598-020-57496-8
- Nie J., Peng C., Pei W., et al. A novel role of long non-coding RNAs in response to X-ray irradiation. Toxicol. In Vitro 2015; 30:536–44. https://doi.org/10.1016/j.tiv.2015.09.007
- Koch A., Reinhardt Ph., Elicin O. et al. Predictive biomarkers of radiotherapy-related dermatitis, xerostomia, mucositis and dysphagia in head and neck cancer: A systematic review. Radiother. Oncol. 2025; 203:110689. https://doi.org/10.1016/j.radonc.2024.110689
- Abend M., Amundson S.A., Badie C., et al. Interlaboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise. Sci. Rep. 2021; 11(1):9756. https://doi.org/10.1038/s41598-021-88403-4
- Abend M., Amundson S.A., Badie C., et al. RENEB inter-laboratory comparison 2021: the gene expression assay. Radiat. Res. 2023; 199(6):598–615. https://doi.org/10.1667/RADE-22-00206.1
- Agbenyegah S., Abend M., Atkinson M.J., et al. Impact of inter-individual variance in the expression of a radiation-responsive gene panel used for triage. Radiat. Res. 2018; 190(3):226–235. https://doi.org/10.1667/RR15013.1
- Schüle S., Hackenbroch C., Beer M., et al. Ex-vivo dose response characterization of the recently identified EDA2R gene after low level radiation exposures and comparison with FDXR gene expression and the γH2AX focus assay. Int. J. Radiat. Biol. 2023; 99(10):1584–1594. https://doi.org/ 10.1080/09553002.2023.2194402
- Sharma S., Rehan A., Dutta A. A data mining approach to identify key radioresponsive genes in mouse model of radiation-induced intestinal injury. Biomarkers. 2024; 29(8):505–517. https://doi.org/10.1080/1354750X.2024.2420196
- Ghandhi S.A., Shuryak I., Morton S.R., Amundson S.A., Brenner D.J. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci Rep. 2019; 9(1):18441. https://doi.org/10.1038/s41598-019-54967-5
- Port M., Ostheim P., Majewski M., et al. Rapid High-Throughput Diagnostic Triage after a Mass Radiation Exposure Event Using Early Gene Expression Changes. Radiat. Res. 2019; 192(2):208–218. https://doi.org/10.1667/RR15360.1
- Cruz-Garcia L., O'Brien G., Sipos B., et al. Generation of a Transcriptional Radiation Exposure Signature in Human Blood Using Long-Read Nanopore Sequencing. Radiat. Res. 2020; 193(2):143–154. https://doi.org/10.1667/RR15476.1
- Winters T.A., Taliaferro L.P., Satyamitra M.M. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat. Res. 2022; 197(5):554–558. https://doi.org/10.1667/RADE-21-00213.1
- Rudqvist N., Laiakis E.C., Ghandhi S.A., et al. Global gene expression response in mouse models of DNA repair deficiency after gamma irradiation. Radiat. Res. 2018; 189(4):337–44. https://doi.org/10.1667/RR14862.1
- Emwas A.H., Roy R., McKay R.T., et al. NMR spectroscopy for metabolomics research. Metabolites. 2019; 9(7):123. https://doi.org/ 10.3390/metabo9070123
- Letertre M.P.M., Giraudeau P., de Tullio P. Nuclear magnetic resonance spectroscopy in clinical metabolomics and personalized medicine: current challenges and perspectives. Front. Mol. Biosci. 2021; 8:698337. https://doi.org/ 10.3389/fmolb.2021.698337
- Singh V.K., Seed T.M., Cheema A.K. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert. Rev. Mol. Diagn. 2021; 21(7):641–54. https://doi.org/10.1080/14737159.2021.1933448
- Vicente E., Vujaskovic Z., Jackson I.L. A systematic review of metabolomic and lipidomic candidates for biomarkers in radiation injury. Metabolites. 2020; 10(6):259. https://doi.org/10.3390/metabo10060259
- Salah M., Osuga S., Nakahana M., et al. Elucidation of gastrointestinal dysfunction in response to irradiation using metabolomics. Biochem. Biophys. Rep. 2020; 23:100789. https://doi.org/10.1016/j.bbrep.2020.100789
- Laiakis E.C., Canadell M.P., Grilj V., et al. Serum lipidomic analysis from mixed neutron/X-ray radiation fields reveals a hyperlipidemic and pro-inflammatory phenotype. Sci. Rep. 2019; 9(1):4539. https://doi.org/10.1038/s41598-019-41083-7
- Laiakis E.C., Strawn S.J., Brenner D.J., Fornace A.J. Assessment of saliva as a potential biofluid for biodosimetry: a pilot metabolomics study in mice. Radiat. Res. 2016; 186(1):92–7. https://doi.org/10.1667/RR14433.1
- Chen Q., Zhao H., Xi C., et al. Targeted lipidomics-based study of radiation-induced metabolite profiles changes in plasma of total body irradiation cases. Int. J. Rad. Biol. 2024; 10:1481–1492. https://doi.org/10.1080/09553002.2024.2387054
- Pannkuk E.L., Laiakis E.C., Mak T.D., et al. A lipidomic and metabolomic serum signature from non-human primates exposed to ionizing radiation. Metabolomics. 2016; 12(5):80. https://doi.org/10.1007/s11306-016-1010-0
- Pannkuk E.L., Laiakis E.C., Authier S., et al. Targeted metabolomics of nonhuman primate serum after exposure to ionizing radiation: potential tools for high-throughput biodosimetry. RSC Adv. 2016; 6(56):51192–51202. https://doi.org/10.1039/C6RA07757A
- Сотник Н.В., Рыбкина В.Л., Азизова Т.В. Новые подходы в биологической дозиметрии: создание комплексных биодозиметрических систем (обзор зарубежной литературы). Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2018; (4):90–96. [Sotnik N.V., Rybkina V.L., Azizova T.V. New approaches to biological dosimetry: development of complex biodosimetric systems (review of foreign literature). Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2018; (4):90–96. (In Russ.)]. https://doi.org/10.25016/2541-7487-2018-0-4-90-96
- Cheema A.K., Byrum S.D., Sharma N.K., et al. Proteomic changes in mouse spleen after radiation-induced injury and its modulation by gamma-tocotrienol. Radiat. Res. 2018; 190:449–63. https://doi.org/10.1667/RR15008.1
- Ossetrova N.I., Sandgren D.J., Blakely W.F. Protein biomarkers for enhancement of radiation dose and injury assessment in nonhuman primate total-body irradiation model. Radiation Protection Dosimetry. 2014; 159(1–4):61–76. https://doi.org/10.1093/rpd/ncu165
- Hollingsworth B.A., Cassatt D.R., DiCarlo A.L., et al. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front. Pharmacol. 2021; 12:643283. https://doi.org/10.3389/fphar.2021.643283
- Goudarzi M., Mak T.D., Jacobs J.P., et al. An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis. Radiat. Res. 2016; 186(3):219–34. https://doi.org/10.1667/RR14306.1
- Pannkuk E., Laiakis E., Girgis M., et al. Temporal effects on radiation responses in nonhuman primates: identification of biofluid small molecule signatures by gas chromatography-mass spectrometry metabolomics. Metabolites. 2019; 9(5):98. https://doi.org/10.3390/metabo9050098
- Cai S., Zhao T., Xie L., et al. A feasibility study of gut microbiome and metabolites as biodosimeters for early triage of radiation induced intestinal injury in radiological events. Int. J. Radiat. Oncology Biology Physics. 2020; 108(3): e517. https://doi.org/10.1016/j.ijrobp.2020.07.1623
- Swarts S.G., Sidabras J.W., Grinberg O., et al. Developments in Biodosimetry Methods for Triage With a Focus on X-band Electron Paramagnetic Resonance In Vivo Fingernail Dosimetry. Health Phys. 2018; 115(1):140–150. https://doi.org/10.1097/HP.0000000000000874
- Swartz H.M., Flood A.B., Singh V.K., Swarts S.G. Scientific and Logistical Considerations When Screening for Radiation Risks by Using Biodosimetry Based on Biological Effects of Radiation Rather than Dose: The Need for Prior Measurements of Homogeneity and Distribution of Dose. Health Phys. 2020; 119(1):72–82. https://doi.org/10.1097/HP.0000000000001244
- Blakely W.F., Port M., Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. J. Radiol. Prot. 2021; 41(4). https://doi.org/10.1088/1361-6498/ac15df
- Arnautou P., Garnier G., Maillot J., et al. Management of acute radiation syndrome. Transfus. Clin. Biol. 2024; 31(4):253–259. https://doi.org/10.1016/j.tracli.2024.07.002
- Djomina E.A., Talko V.V. Cytogenetic indicators of acute radiation sickness (the chornobyl experience). Probl. Radiac. Med. Radiobiol. 2021; 26:398–409. https://doi.org/10.33145/2304-8336-2021-26-398-409
- Осовец С.В., Азизова Т.В., Василенко Е.К. Метод биологической дозиметрии для оценки аварийных доз внешнего облучения. Радиационная биология. Радиоэкология. 2017; 1:16–21. [Osovec S.V., Azizova T.V., Vasilenko E.K. Metod biologicheskoj dozimetrii dlja ocenki avarijnyh doz vneshnego obluchenija = Method of biological dosimetry for assessing emergency doses of external radiation. Radiation biology. Radioecology. 2017; 1: 16–21. (In Russ.)].
- Dainiak N., Albanese J., Kaushik M., et al. Сoncepts of operations for a us dosimetry and biodosimetry network. Radiat. Prot. Dosimetry. 2019; 186(1):130–138. https://doi.org/10.1093/rpd/ncy294
- Sholom S., McKeever S.W.S., Escalona M.B., Ryan T.L., Balajee A.S. A comparative validation of biodosimetry and physical dosimetry techniques for possible triage applications in emergency dosimetry. J. Radiol. Prot. 2022; 42(2). https://doi.org/10.1088/1361-6498/ac5815
- Blakely W.F., Port M., Ostheim P., Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat. Res. 2024; 202(2):185–204. https://doi.org/10.1667/RADE-24-00121.1
Supplementary files

