Assessment of the Degree Of DNA Methylation in Lymphocytes аfter а Single Blood Irradiation in vitro
- Authors: Tsymbal O.S.1, Isubakova D.S.1, Bronikovskaya E.V.1, Nikolaeva A.F.2, Sigin V.O.2, Kalinkin A.I.2, Kirillov V.M.2, Startseva Z.A.3, Litviakov N.V.1,3, Milto I.V.1,4, Takhauov R.M.1,4
-
Affiliations:
- Seversk Biophysical Research Center of the Federal Medical-Biological Agency
- Research Centre for Medical Genetics
- Tomsk National Research Medical Center of the Russian Academy of Sciences
- Siberian State Medical University
- Issue: Vol 64, No 2 (2024)
- Pages: 126-135
- Section: Материалы VII Международной научно-практической конференции “Медицинские и экологические эффекты ионизирующего излучения” (Томск, 21–22 марта 2023 г.)
- URL: https://journals.rcsi.science/0869-8031/article/view/266990
- DOI: https://doi.org/10.31857/S0869803124020021
- EDN: https://elibrary.ru/NBNXKS
- ID: 266990
Cite item
Abstract
DNA methylation is one of the processes of epigenetic regulation of the genome, which is sensitive to the influence of endogenous and exogenous factors. The effect of ionizing radiation on the genome is accompanied by a change in the degree of DNA methylation, which can be dose-dependent and persist for a long time after radiation exposure. The objective of the study was to assess the degree of DNA methylation of blood lymphocytes after a single exposure to gamma radiation at a dose of 1.5 Gy using wide-genome bisulfite sequencing. The study included 10 conditionally healthy male employees of the ionizing radiation facility who were not exposed to radiation and did not suffer from chronic diseases. The material was whole blood: 0 Gy (control samples) and 1.5 Gy (experimental samples irradiated with gamma radiation). After irradiation with subsequent cultivation of whole blood, DNA isolation and bisulfite sequencing of limited sets of genomic loci (Reduced representation bisulfite sequencing) was performed using XmaI restriction enzyme (XmaI-RRBS). 41 genes were identified, including 26 genes (HOXD4, PADI2, FOXK1, FTCD, PRDM16, TOM1, PPP1R14A, FLNB, OR1F1, RARA, CRTAC1, AP5B1, ARL5C, NOC2L, MAMDC4, FGFRL1, PPFIA3, CUX2, ANKRD20A19P, FAM83H-AS1, CBFA2T3, POLN, MIR4458HG, FNBP1, SPIRE2, and ZSCAN10) have a tendency to hypomethylation DNA, and another 15 genes (CHRNA4, SEPTIN9, ZNF174, ELK3, NFAM1, ALG10, SOX8, KLHL30, URI1, HBZ, KLF14, MYO16, MYEOV, DMKN, and PAX7) tend to have hypermethylated state detected in at least 50٪ of the experimental samples. Thus, the genes identified in this study can be promising markers of radiation exposure and, in the future, be used to develop a new type of biological dosimetry – epigenomic dosimetry of personnel in contact with ionizing radiation sources in the course of their professional activities.
Full Text

About the authors
Olga S. Tsymbal
Seversk Biophysical Research Center of the Federal Medical-Biological Agency
Author for correspondence.
Email: olga-tsymbal@mail.ru
ORCID iD: 0000-0002-2311-0451
Russian Federation, Seversk
Daria S. Isubakova
Seversk Biophysical Research Center of the Federal Medical-Biological Agency
Email: isubakova.daria@yandex.ru
ORCID iD: 0000-0002-5032-9096
Russian Federation, Seversk
Evgenia V. Bronikovskaya
Seversk Biophysical Research Center of the Federal Medical-Biological Agency
Email: Bronikev@gmail.com
ORCID iD: 0000-0002-6486-5025
Russian Federation, Seversk
Alexandra F. Nikolaeva
Research Centre for Medical Genetics
Email: alex.ru97@bk.ru
ORCID iD: 0000-0002-3805-8879
Russian Federation, Moscow
Vladimir O. Sigin
Research Centre for Medical Genetics
Email: sigin.vladimir@gmail.com
ORCID iD: 0000-0001-8020-3577
Russian Federation, Moscow
Alexey I. Kalinkin
Research Centre for Medical Genetics
Email: alexeika2@yandex.ru
ORCID iD: 0000-0001-9215-4581
Russian Federation, Moscow
Vladimir M. Kirillov
Research Centre for Medical Genetics
Email: 96vladkiri96@gmail.com
ORCID iD: 0000-0002-8762-1322
Russian Federation, Moscow
Zhanna A. Startseva
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: zhanna.alex@rambler.ru
ORCID iD: 0000-0002-4345-7719
Russian Federation, Tomsk
Nicolay V. Litviakov
Seversk Biophysical Research Center of the Federal Medical-Biological Agency; Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: nvlitv72@yandex.ru
ORCID iD: 0000-0002-0714-8927
Russian Federation, Seversk; Tomsk
Ivan V. Milto
Seversk Biophysical Research Center of the Federal Medical-Biological Agency; Siberian State Medical University
Email: milto_bio@mail.ru
ORCID iD: 0000-0002-9764-4392
Russian Federation, Seversk; Tomsk
Ravil M. Takhauov
Seversk Biophysical Research Center of the Federal Medical-Biological Agency; Siberian State Medical University
Email: niirm2007@yandex.ru
ORCID iD: 0000-0002-1994-957X
Russian Federation, Seversk; Tomsk
References
- Калинкин А.И., Сигин В.О., Немцова М.В. и др. Аномальное деметилирование и эктопическая экспрессия генов лейкотриеновых рецепторов LTB4R/LTB4R2 при раке молочной железы. Мед. генетика. 2021;20(8):21–30. [Kalinkin A.I., Sigin V.O., Nemtsova M.V. et al. Abnormal demethylation and ectopic expression of leukotriene receptors genes LTB4R/LTB4R2 in breast cancer. Medical Genetics. 2021;20(8):21–30. (In Russ.)]. https://doi.org/10.25557/2073-7998.2021.08.21-30
- Lee Y., Kim Y.J., Choi Y.J. et al. Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers. Int. J. Radiat. Biol. 2015;91(2):142–149. https://doi.org/10.3109/09553002.2015.969847
- Кузьмина Н.С., Мязин А.Е., Лаптева Н.Ш., Рубанович А.В. Изучение аберрантного метилирования в лейкоцитах крови ликвидаторов аварии на ЧАЭС. Радиац. биология. Радиоэкология. 2014;54(2):127–139. [Kuzmina N.S., Myazin A.E., Lapteva N.S., Rubanovich A.V. Study of aberrant methylation in blood leukocytes of liquidators of the chernobyl accident. Radiat. Biology. Radioecology. 2014;54(2):127–139. (In Russ.)]. https://doi.org/10.7868/S0869803114020064
- Kuzmina N.S., Lapteva N.Sh., Rubanovich A.V. Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure. Environ. Res. 2016;146:10–17. https://doi.org/10.1016/ j.envres.2015.12.008
- Кузьмина Н.С., Лаптева Н.Ш., Русинова Г.Г. и др. Дозовая зависимость гиперметилирования промоторов генов в лейкоцитах крови лиц, подвергшихся облучению в результате профессиональной деятельности: Мат. Рос. конф. с междунар. участием “Современные проблемы радиационной генетики”. Дубна, 2019. Дубна: Изд-во Объединенный институт ядерных исследований, 2019. С. 76–78. [Kuzmina N.S., Lapteva N.Sh., Rusinova G.G. et al. Dose dependence of hypermethylation of gene promoters in blood leukocytes in humans occupationally exposed to radiation. Materials of the Russian conference with international participation “Modern problems of radiation genetics”: Conf. proc. Dubna, 2019. Dubna: Izd-vo Joint Institute for Nuclear Research, 2019. Р. 76–78. (In Russ.)].
- Цымбал О.С., Исубакова Д.С., Брониковская Е.В. и др. Роль метилирования Bak1 в индукции хромосомных аберраций при хроническом низкоинтенсивном внешнем облучении. Мед. радиология и радиац. безопасность. 2020;65(5):29–34. [Tsymbal O.S., Isubakova D.S., Bronikovskaya E.V., et al. The role of Bak1 methylation in the induction of chromosomal aberrations under chronic low-intensity external radiation. Medical Radiology and Radiation Safety. 2020;65(5):29–34. (In Russ.)]. https://doi.org/10.12737/1024-6177-2020-65-5-29-34
- Kennedy E.M., Powell D.R., Li Z. et al. Galactic cosmic radiation induces persistent epigenome alterations relevant to human lung cancer. Sci. Rep. 2018;8(1):6709. https://doi.org/10.1038/s41598-018-24755-8
- Tanas A.S., Borisova M.E., Kuznetsova E.B. et al. Rapid and affordable genome-wide bisulfite DNA sequencing by XmaI-reduced representation bisulfite sequencing. Epigenomics. 2017;9(6): 833–847. https://doi.org/10.2217/epi-2017-0031
- Suomi T., Seyednasrollah F., Jaakkola M.K. et al. ROTS: An R package for reproducibility-optimized statistical testing. PLoS Comput. Biol. 2017;13(5):e1005562. https://doi.org/10.1371/journal.pcbi.1005562
- Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed October 19, 2022.
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2020. Available at: https://www.R-project.org/. Accessed December 20, 2022.
- Chen Y., Wu J., Liang G. et al. CHK2-FOXK axis promotes transcriptional control of autophagy programs. Sci. Advances. 2020;6(1):eaax5819. https://doi.org/10.1126/sciadv.aax5819
- Cao H., Chu X., Wang Zh. et al. High FOXK1 expression correlates with poor outcomes in hepatocellular carcinoma and regulates stemness of hepatocellular carcinoma cells. Life Sci. 2019;228:128–134. https://doi.org/10.1016/ j.lfs.2019.04.068
- Atsem St., Reichenbach J., Potabattula R. et al. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum. Mol. Genet. 2016;25(22):4996–5005. https://doi.org/10.1093/hmg/ddw328
- Reichenbach J.R. Paternal age effects on sperm DNA methylation and its impact on the next generation. [dissertation for Doctoral] Würzburg; 2020. 106 р. Available at: https://www.researchgate.net/publication/339375571_Paternal_age_effects_on_sperm_DNA_methylation_and_its_impact_on_the_next_generation Accessed February 2, 2023.
- Steinauer N., Guo Ch., Zhang J. The transcriptional corepressor CBFA2T3 inhibits all-trans-retinoic acid-induced myeloid gene expression and differentiation in acute myeloid leukemia. J. Biol. Chem. 2020;295(27):8887–8900. https://doi.org/10.1074/jbc.RA120.013042
- Calender A., Farnier P.A.R., Buisson A. et al. Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med. Genomics. 2018;11(1):23. https://doi.org/10.1186/s12920-018-0338-x
- [Matsuoka M. Mechanism of oncogenesis by human T-cell leukemia virus type 1. Gan To Kagaku Ryoho. 2010;37(1):10–13. (in Japan.)].
- [Fang F., Yu X.L., Niu D.S., Li J. Screening of candidate genes related to low-dose ionizing radiation based on transcriptome-proteome correlation research techniques. Chinese Journal of Industrial Hygiene and Occupational Diseases. 2021;39(10):738–743. (in Chinese)]. https://doi.org/0.3760cma.j.cn121094-20200518-00267
- Chaudhry M.A., Omaruddin R.A. Differential DNA methylation alterations in radiation-sensitive and -resistant cells. DNA Cell Biol. 2012;31(6):908–916. https://doi.org/10.1089/dna.2011.1509
- Bae J.-H., Kim J.-G., Heo K. et al. Identification of radiation-induced aberrant hypomethylation in colon cancer. BMC Genomics. 2015;16(1):56. https://doi.org/10.1186/s12864-015-1229-6
- Velpula K.K., Gogineni V.R., Nalla A.K. et al. Radiation-induced hypomethylation triggers urokinase plasminogen activator transcription in meningioma cells. Neoplasia. 2013;15(2):192–203 https://doi.org/10.1593/neo.121334
- Кузьмина Н.С., Лаптева Н.Ш., Русинова Г.Г. и др. Гиперметилирование промоторов генов в лейкоцитах крови человека в отдаленный период после перенесенного радиационного воздействия. Радиац. биология. Радиоэкология. 2017;54(4):341–356. [Kuzmina N.S., Lapteva N.Sh., Rusinova G.G., et al. Hypermethylation of gene promoters in blood leukocytes in humans in the remote period after radiation exposure. Radiat. Biology. Radioecology. 2017;54(4):341–356. (In Russ.)]. https://doi.org/10.7868/S0869803117040014
- Kuzmina N.S., Lapteva N.Sh., Rusinova G.G. et al. Gene hypermethylation in blood leukocytes in humans long term after radiation exposure – Validation set. Environ. Pollut. 2018;234:935–942. https://doi.org/10.1016/j.envpol.2017.12.039
- Chen X., Liu L., Mims J. et al. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors. Epigenetics. 2015;10(6):545–561. https://doi.org/10.1080/15592294.2015.1048953
- Zhao F., Olkhov-Mitsel E., van der Kwast T. et al. Urinary DNA methylation biomarkers for noninvasive prediction of aggressive disease in patients with prostate cancer on active surveillance. J. Urology. 2017;197(2):335–341. https://doi.org/10.1016/j.juro.2016.08.081
- Patel P.G., Wessel Th., Kawashima A. et al. A three-gene DNA methylation biomarker accurately classifies early stage prostate cancer. Prostate. 2019;79(14):1705–1714. https://doi.org/10.1002/pros.23895
- Mian O.Y., Khattab M.H., Hedayati M. et al. GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress. Prostate. 2016;76(2):199–206. https://doi.org/10.1002/pros.23111
Supplementary files
