Peculiarities of behavior in “soil–water” environment of radiocesium in contaminated area after the accident at Fukushima Dai-ichi NPP

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 led to extensive environmental contamination by several radionuclides, particularly 134Cs (half-life Т1/2=2.06 years) and 137Cs (Т1/2=30.17 years). This has rekindled the interest in the behavior of radiocesium in the environment, particularly given the geoclimatic conditions of Japan. This review paper summarizes key findings of post-Fukushima studies of radiocesium fate and transport in soil-water environment and challenges for the future. The studies after the Fukushima accident have clearly demonstrated that behaviour of accidentally released radiocesium in the environment is governed by speciation in fallout and site-specific environmental characteristics. The Fukushima-derived 137Cs is found to be strongly bound to soil and sediment particles, which reduces the potential bioavailability of this radionuclide. Up to 80% of the deposited 137Cs on the soil of the contaminated area were reported to be incorporated in hot glassy microparticles (CsMPs) insoluble in water. These particles decompose in the environment very slowly, and long-term radiocesium leaching from these particles is a challenge for future studies. In Fukushima contaminated areas the high annual precipitation and steep slopes are conducive to significant erosion and intensive r-Cs wash-off especially during devastating typhoons. Typhoons Etou in 2015 and Hagibis in 2019 demonstrated a pronounced redistribution of 137Cs on river watersheds and floodplains, and natural self-decontamination occurred in some cases. Understanding mechanisms and prediction of radiocesium long-term dynamics and seasonality in water bodies, as well as its remobilization from river-transported sediments at the interface between freshwater and marine water in estuaries is important challenge for contemporary radioecology.

About the authors

A. V. Konoplev

Fukushima University

Author for correspondence.
Email: alexeikonoplev@gmail.com

Institute of Environmental Radioactivity

Japan, Fukushima

References

  1. Chino M., Nakayama H., Nagai H. et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J. Nucl. Sci. Technol. 2011; 48: 1129–1134. https://doi: 10.1080/18811248.2011.9711799
  2. Hirose K. 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J. Environ. Radioact. 2012; 111: 13–17. https://doi: 10.1016/j.jenvrad.2011.09.003
  3. Results of the Fifth Airborne Monitoring Survey and Airborne Monitoring Survey Outside 80km from the Fukushima Dai-ichi NPP. Ministry of Education, Culture, Sports, Science and Technology of Japan; 2012. http://radioactivity.nsr.go.jp/en/contents/6000/5790/24/203_0928_14e.pdf
  4. Арутюнян Р.В., Большов Л.А., Боровой А.А., Велихов Е.П. Системный анализ причин и последствий аварии на АЭС Фукусима-1. М.: Институт проблем безопасного развития атомной энергетики РАН, 2018. 408 с. [Arutyunyan R.V., Bolshov L.A., Borovoy A.A., Velihov E.P. Systemnyi analyz prichin i posledstviy avarii na AES Fukushima-1. Moskva: Institut bezopasnogo razvitiya atomnoi energetiki RAN; 2018. 408 p. (In Russ.)]
  5. Chaisan K., Smith J.T., Bossew P. et al. Worldwide isotope ratios of the Fukushima release and early-phase external dose reconstruction. Sci. Rep. 2013;3:2520. https://doi: 10.1038/srep02520
  6. Hirose K. 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J. Environ. Radioact. 2012;111:13–17. https://doi: 10.1016/j.jenvrad.2011.09.003
  7. Konoplev A., Golosov V., Wakiyama Y., et al. Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration. J. Environ. Radioact. 2018;186:23–33. https://doi: 10.1016/j.jenvrad.2017.06.019
  8. Malins A., Kurikami H., Nakama S. et al. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture. J. Environ. Radioact. 2016;151:38-49. https://doi: 10.1016/j.jenvrad.2015.09.014
  9. Konoplev A.V., Bulgakov A.A., Popov V.E., Bobovnikova Ts.I. Behaviour of long-lived Chernobyl radionuclides in a soil-water system. Analyst. 1992; 117: 1041-1047.
  10. Beresford N., Fesenko S., Konoplev A. et al. Thirty years after the Chernobyl accident: what lessons have we learnt? J. Environ. Radioact. 2016;157:77-89. https://doi: 10.1016/j.jenvrad.2016.02.003
  11. Hirose K, Povinec P.P. Ten years of investigations of Fukushima radionuclides in the environment: A review on process studies in environmental compartments. J. Environ. Radioact. 2022;251-252: 106929. https://doi.org/10.1016/j.jenvrad.2022.106929
  12. Konoplev A. Fukushima and Chernobyl: similarities and differences of radiocesium behavior in the soil–water environment. Toxics. 2022;10:578. https://doi: 10.3390/toxics10100578
  13. Nagao S., Kanamori M., Ochiai S. et al. Export of 134Cs and 137Cs in the Fukushima River systems at heavy rains by Typhoon Roke in September 2011. Biogeosciences. 2013; 10: 6215-6223. 10.5194/bg-10-6215-2013' target='_blank'>https://doi: 10.5194/bg-10-6215-2013
  14. Yamashiki Y., Onda Y., Smith H.G. et al. Initial flux of sediment-associated radiocesium to the ocean from largest river impacted by Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 2014;4:3714. https://doi: 10.1038/srep03714
  15. Evrard O., Chartin C., Onda Y. et al. Renewed soil erosion and remobilization of radioactive sediment in Fukushima coastal rivers after the 2013 typhoons. Sci. Rep. 2014;4:4574. https://doi: 10.1038/srep04574
  16. Wakiyama Y., Konoplev A., Thoa N. et al. Temporal Variations in Particulate and Dissolved 137Cs Activity Concentrations in the Abukuma River During Two High-Flow Events in 2018. In: Nanba K., Konoplev A., Wada T. (eds) Behavior of Radionuclides in the Environment III: Fukushima. SPRINGER Nature, Singapore, 2022; 153-176. https://doi: 10/1007/978-981-16-6799-2_9
  17. Niida T., Wakiyama Y., Takata H. et al. A comparative study of riverine 137Cs dynamics during high-flow events at three contaminated river catchments in Fukushima. Sci. Total Environ. 2022;821:153408. https://doi: 10.1016/j.scitotenv.2022.153408
  18. Evrard O., Laceby J.P., Lepage H. et al. Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: A review. J. Environ. Radioact. 2015;148:92–110. https://doi: 10.1016/j.jenvrad.2015.06.018
  19. Yoshimura K., Onda Y., Sakaguchi A. et al. An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory. 2015;139:370–378. https://doi: 10.1016/j.jenvrad.2014.08.021
  20. Konoplev A., Kanivets V., Zhukova O. et al. Mid- to long-term radiocesium wash-off from contaminated catchments at Chernobyl and Fukushima. Water Res. 2021;188:116514. https://doi: 10.1016/j.watres.2020.116514
  21. Onda Y., Taniguchi K., Yoshimura K. et al. Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial systems. Nature Reviews Earth & Environ. 2020;1,644-660. https://doi: 10.1038/s43017-020-0099-x
  22. Konoplev A., Wakiyama Y., Wada T. et al. Reconstruction of time changes in radiocesium concentrations in the river of the Fukushima Dai-ichi NPP contaminated area based on its depth distribution in dam reservoir’s bottom sediments. Environ. Res. 2022;206:112307. https://doi: 10.1016/j.envres.2021.112307
  23. Kaneyasu N., Ohashi H., Suzuki F. et al. Sulfate Aerosol as a Potential Transport Medium of Radiocesium from the Fukushima Nuclear Accident. Environ. Sci. Technol. 2012;46:5720-5726. https://doi: 10.1021/es204667h
  24. Xu S., Zhang L., Freemant S., Hou X. et al. Speciation of radiocesium and radioiodine in aerosols from Tsukuba after the Fukushima nuclear accident. Environ. Sci. Technol. 2015;49(2):1017-1024.
  25. Adachi K., Kajino M., Zaizen Y., Igarashi Y. Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep. 2013; 3: 2554. https://doi: 10.1038/srep02554
  26. Abe Y., Iizawa Y., Terada Y. et al. Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal. Chem. 2015; 88: 8521–8525. https://doi: 10.1021/ac501998d
  27. Igarashi Y., Kogure T., Kurihara Y. et al. A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2019; 205–206: 101–118. https://doi: 10.1016/j.jenvrad.2019.04.011
  28. Niimura N., Kikuchi K. Tuyen N.D. et al. Physical properties, structure and shape of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident derived from soil, bamboo and shiitake mushroom measurements. J. Environ. Radioact. 2015; 139: 234-239. https://doi: 10.1016/j.jenvrad.2013.12.020
  29. Satou Y., Sueki K., Sasa K. et al. Analysis of two forms of radioactive particles emitted during the early stages of the Fukushima Dai-ichi Nuclear Power Station accident. Geochem. J. 2018; 52: 137-143. https://dx.doi.org/10.2343/geochemj.2.0514
  30. Miura H., Kurihara Y., Sakaguchi A. et al. Discovery of radiocesium-bearing microparticles in river water and their influence on the solid-water distribution coefficient (Kd) of radiocesium in the Kuchibuto River in Fukushima. Geochem. J. 2018; 52: 1-10. https://doi: 10.2343/geochemj.2.0517
  31. Konoplev A., Wakiyama Y., Wada T. et al. Behavior of Fukushima-Derived Radiocesium in the Soil–Water Environment: Review. In: Nanba K., Konoplev A., Wada T. (eds) Behavior of Radionuclides in the Environment III: Fukushima. SPRINGER Nature, Singapore: 2022. P. 33-68. https://doi: 10.1007/978-981-16-6799-2-4
  32. Ikehara R., Suetake M., Komiya T. et al. Novel method of quantifying cesium-rich microparticles (CsMPs) in the environment from the Fukushima Daiichi nuclear power plant. Environ. Sci. Technol. 2018;52:6390–6398. doi: 10.1021/acs.est.7b06693
  33. Ikehara R., Morooka K., Suetake M. et al. Abundance and distribution of radioactive cesium-rich microparticles released from the Fukushima Daiichi Nuclear Power Plant into the environment. Chemosphere. 2020;241:125019. https://doi: 10.1016/j.chemosphere.2019.125019
  34. Коноплев А.В. Распределение радиоцезия аварийного происхождения между взвешенными наносами и раствором в реках: Cравнение Фукусимы и Чернобыля. Радиохимия. 2015. Т. 57. №5. С. 471-474. [Konoplev A.V. Distribution of radiocesium of accidentally origin between suspended matter and solution in rivers: comparison of Fukushima and Chernobyl. Radiochemistry. 2015;57(5): 471-474. (In Russ).]
  35. Коноплев А.В., Булгаков А.А. Трансформация форм нахождения 90Sr и 137Cs в почве и донных отложениях. Атомная энергия. 2000. Т. 88. №1. С. 55–60. [Konoplev A.V., Bulgakov A.A. Transformation of the forms of 90Sr and 137Cs in soil and bottom sediments. Atomic Energy. 2000;88(1):56-60. (In Russ.)].
  36. Cremers A., Elsen A., De Preter P., Maes A. Quantitative analysis of radiocesium retention in soils. Nature. 1988;335:247–249.
  37. Коноплев А.В., Коноплева И.В. Определение характеристик равновесной селективной сорбции радиоцезия почвами и донными отложениями. Геохимия. 1999. №2. С. 207–214. [Konoplev A.V., Konopleva I.V. Characteristics of steady-state selective sorption of radiocesium on soils and bottom sediments. Geochem. Int. 1999; 37(2):177-183.]
  38. De Koning A., Konoplev A., Comans R. Measuring the specific caesium sorption capacity of soils, sediments and clay minerals. Appl. Geochem. 2007;22(1):219-229. doi: 10.1016/j.apgeochem.2006.07.013
  39. Павлоцкая Ф.И. Миграция радиоактивных продуктов глобальных выпадений в почвах. М.: Атомиздат, 1974. 270 с. [Pavlotskaya F.I. Migratsiya radioaktivnyh produktov globalnyh vypadeniy v pochvah. Moskva: Atomizdat, 1974. 270 p. (In Russ.)]
  40. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical reports series No. 472. Vienna: International Atomic Energy Agency (IAEA), 2010. 194 p.
  41. Коноплев А.В., Булгаков А.А. Обменный коэффициент распределения 90Sr и 137Cs в системе почва-вода. Атомная энергия. 2000. Т. 88. №2. С. 152–158. [Konoplev A.V., Bulgakov A.A. 90Sr and 137Cs exchange distribution coefficient in soil-water system. Atomic Energy. 2000;88(2):158-163. (In Russ.)]
  42. Konoplev A., Golosov V., Laptev G. et al. Behavior of accidentally released radiocesium in soil-water environment: looking at Fukushima from a Chernobyl perspective. J. Environ. Radioact. 2016;151:568–578. doi: 10.1016/j.jenvrad.2015.06.019
  43. Ueda S., Hasegawa H., Kakiuchi H. et al. Fluvial Discharges of Radiocesium from Watersheds Contaminated by Fukushima Dai-ichi Nuclear Plant Accident, Japan. J. Environ. Radioact. 2013;118:96-104. doi: 10.1016/j.jenvrad.2012.11.009
  44. Sakaguchi A., Tanaka K., Iwatani H. et al. Size distribution studies of 137Cs in river water in the Abukuma Riverine system following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2015;139:379-389.
  45. Nakanishi T., Sakuma K. Trend of 137Cs concentration in river water in the medium term and future following the Fukushima nuclear accident. Chemosphere. 2019;215:272–279. doi: 10.1016/j.chemosphere.2018.10.017
  46. Taniguchi K., Onda Y., Smith H.G. et al. Transport and redistribution of radiocesium in Fukushima fallout through rivers. Environ. Sci. Technol. 2019;53:12339–12347. doi: 10.1021/acs.est.9b02890
  47. Funaki H., Sakuma K., Nakanishi T. et al. Reservoir sediments as a long-term source of dissolved radiocesium in water system; a mass balance case study of an artificial reservoir in Fukushima, Japan. Sci. Total Environ. 2020;743:140668. https://doi: 10.1016/j.scitotenv.2020.140668
  48. Ueda S., Hasegawa H., Ohtsuka Y. et al. Ten-year radiocesium fluvial discharge patterns from watersheds contaminated by the Fukushima nuclear power plant accident. J. Environ. Radioact. 2021;240:106759. https://doi: 10.1016/j.jenvrad.2021.106759
  49. Igarashi Y., Nanba K., Wada T. et al. Factors Controlling the Dissolved 137Cs Seasonal Fluctuations in the Abukuma River Under the Influence of the Fukushima Nuclear Power Plant Accident. J. Geophys. Res. Biogeosciences 2022;127(1):1-16. https://doi.org/10.1029/2021JG006591
  50. Nakao A., Ogasawara S, Sano O. et al. Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan. Sci. Total Environ. 2014;468–469:523–529. https://doi: 10.1016/j.scitotenv.2013.08.062
  51. Hirose K., Aoyama M., Sugimura Y. Plutonium and cesium isotopes in river water in Japan. J. Radioanal. Nuclear Chem. 1990;141(1):191-202.
  52. Matsunaga T., Amano H., Yanase N. Discharge of dissolved and particulate 137Cs in the Kuji River, Japan. App. Geochem. 1991;6: 159-167.
  53. Takata H., Wada T., Aono T. et al. Factors controlling dissolved 137Cs activities in coastal waters on the eastern and western sides of Honshu, Japan. Sci. Total Environ. 2022;806:151216. https://doi: 10.1016/j.scitotenv.2021.151216
  54. Kusakabe M., Takata H. Temporal trends of 137Cs concentration in seawaters and bottom sediments in coastal waters around Japan: implications for the Kd concept in the dynamic marine environment. J. Radioanal. Nuclear Chem. 2020;323:567–580. https://doi.org/10.1007/s10967-019-06958-z
  55. Konoplev A. Radioecology after Fukushima: lessons learned and challenges for the future. Proceedings of the 9th Annual Symposium of the IER, Fukushima University, 14 February 2023, Fukushima. 2023. P. 20.
  56. Aoyama M., Hamajima Y., Inomata Y. et al. Radiocaesium derived from the TEPCO Fukushima accident in the North Pacific Ocean: Surface transport processes until 2017. J. Environ. Radioact. 2018;189:93–102. https://doi: 10.1016/j.jenvrad.2018.03.014
  57. Takata H., Wakiyama Y., Niida T. et al. Importance of desorption process from Abukuma River’s suspended particles in increasing dissolved 137Cs in coastal water during river-flood caused by typhoons. Chemosphere. 2021;281:130751. https://doi: 10.1016/j.chemosphere.2021.130751
  58. Okumura T., Yamaguchi N., Dohi T. et al. Dissolution behavior of radiocesium-bearing microparticles released from the Fukushima nuclear plant. Sci. Rep. 2019;9:3520. https://doi: 10.1038/s41598-019-40423-x
  59. Коноплев А.В., Булгаков А.А. Кинетика выщелачивания 90Sr из топливных частиц в почвах ближней зоны Чернобыльской атомной электростанции. Атомная энергия. 1999. Т. 86. № 2. С. 129-134. [Konoplev A.V., Bulgakov A.A. Kinetics of 90Sr leaching from fuel particles in soil in the near zone of the Chernobyl nuclear power plant. Atomic Energy. 1999;86(2):136-141. (In Russ.)]
  60. Konoplev A.V., Bulgakov A.A., Popov V.E. et al. Long-term investigation of 137Cs fixation by soils. Radiat. Prot. Dosim. 1996;64(1-2):15-18.
  61. Konoplev A., Wakiyama Y., Wada T. et al. Radiocesium distribution and mid-term dynamics in the ponds of the Fukushima Dai-ichi nuclear power plant exclusion zone. Chemosphere. 2021;265:129058. https://doi: 10.1016/j.chemosphere.2020.129058
  62. Applicability of Monitored Natural Attenuation at Radioactively Contaminated Sites. Technical Reports Series No. 445. Vienna: IAEA; 2006. 105 p.
  63. Коноплев А.В., Голосов В.Н., Йощенко В.И., и др. Вертикальное распределение радиоцезия в почвах зоны аварии на АЭС Фукусима-1. Почвоведение. 2016. № 5. С. 620-632. doi: 10.7868/S0032180X16050099. [Konoplev A.V., Golosov V.N., Yoschenko V.I. et al. Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi nuclear power plant accident. Eurasian Soil Science. 2016;49(5):570-580. (In Russ). https://doi: 10.1134/S1064229316050082
  64. Mishra S., Sahoo S., Bossew P. et al. Vertical migration of radio-cesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in undisturbed soils of grassland and forest. J. Geochem. Exploration. 2016;169:163-186. https://doi: 10.1016/j.gexplo.2016.07.023
  65. Takahashi J., Onda Y., Hihara D., Tamura K. Six-year monitoring of the vertical distribution of radiocesium in three forest soils after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2019;210:105811. 10.1016/j.jenvrad.2018.09.009' target='_blank'>https://doi: 10.1016/j.jenvrad.2018.09.009
  66. Sakashita W., Miura S., Akama A. et al. Assessment of vertical radiocesium transfer in soil via roots. J. Environ. Radioact. 2020;222:106369. https://doi: 10.1016/j.jenvrad.2020.106369
  67. Nanba K., Moritaka S., Igarashi S. Dynamics of radiocesium in urban river in Fukushima-city. In: Nanba K., Konoplev A., Wada T. (eds). Behavior of Radionuclides in the Environment III: Fukushima. SPRINGER Nature, Singapore; 2022. P. 137-152. https://doi: 10.1007/978-981-16-6799-2_8
  68. Коноплев А.В. Сравнительный анализ смыва радиоцезия с загрязненных водосборов в результате аварии на АЭС Фукусима-1 и Чернобыльской АЭС. Геохимия. 2016. № 6. С. 536-542. doi: 10.7868/S001675251604004X. [Konoplev A. Comparative analysis of radiocesium wash-off from contaminated watersheds as a result of the accidents at Fukushima Dai-ichi and Chernobyl NPPs. Geochem. Int. 2016;54(6):522-528. https://doi: 10.1134/S0016702916040042 (In Russ.)]
  69. Laceby J.P., Chartin C., Evrard O. et al. Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident. Hydrol. Earth Syst. Sci. 2016;20:2467-2482. 10.5194/hess-20-2467-2016' target='_blank'>https://doi: 10.5194/hess-20-2467-2016
  70. Van Genuchten M.T., Wierenga P.J. Solute Dispersion Coefficients and Retardation Factors. Methods of Soil Analysis. Part 1 Physical and Mineralogical Methods, Madison, Wisconsin USA; 1986. P. 1025–1054
  71. Булгаков А.А., Коноплев А.В. Моделирование вертикального переноса 137Cs в почве по корневой системе дерева. Радиац. биология. Радиоэкология. 2002. Т. 42. № 5. С. 556–560. [Bulgakov A.A., Konoplev A.V. Modelirovanie verticalnogo perenosa 137Cs v pochve po kornevoi systeme dereva. Radiatsionnaya Biologiya. Radioecologiya. 2002;42(5):556-560. (In Russ.)]
  72. Булгаков А.А., Коноплев А., Шкуратова И.Г. Динамика содержания 137Cs в поверхностном слое почв 30-километровой зоны Чернобыльской атомной электростанции. Почвоведение. 2000. №9. С. 1149–1152. [Bulgakov A.A., Konoplev A.V., Shkuratova I.G. Dinamika soderzhaniya 137Cs v poverhnostnom sloe pochv 30-kilometrovoi zony Chernobylskoi atomnoi stantsii. Pochvovedenie. 2000; 6:1149–1152. (In Russ.)]
  73. Коноплев А.В., Голубенков А.В. Моделирование вертикальной миграции радионуклидов в почве (по результатам ядерной аварии). Метеорология и гидрология. 1991. №10. С. 62-68. [Konoplev AV, Golubenkov AV. Modelirovanie vertikalnoi migratsii radionuklidov v pochve (po resultatamyadernoi avarii). Meteoroloia i gidrologia. 1991;10:62-68. (In Russ.)]
  74. Abril J.M., Barros H. Modelling the kinetic reactive transport of pollutants at the sediment-water interface. Applications with atmospheric fallout radionuclides. J. Environ. Radioact. 2022;242:106790. https://doi.org/10.1016/j.jenvrad.2021.106790
  75. Golosov V., Konoplev A., Wakiyama Y. et al. Erosion and redeposition of sediments and sediment-associated radiocesium on river floodplains (the Niida River basin and the Abukuma River as an example). In: Nanba K., Konoplev A., Wada T. (eds) Behavior of Radionuclides in the Environment III: Fukushima. SPRINGER Nature, Singapore: 2022. P. 97–-135. doi: 10.1007/978-981-16-6799-2-7
  76. Иванов М.М., Гуринов А.Л., Иванова Н.Н. и др. Динамика накопления 137Сs в донных осадках Щекинского водохранилища за постчернобыльский период. Радиац. биология. Радиоэкология. 2019. Т. 59. № 6. С. 656-668. [Ivanov M.M., Gurinov F.L, Ivanova N.N. et al. Dynamika nakopleniya 137Сs v donnyh osadkah Schekinskogo vodohranilischa za postchernobylskyi period. Radiatsionnaya Biologiya. Radioekologiya. 2019;59(6);656-668. (In Russ.)]. https://doi: 10.1134/S0869803119060055
  77. Konoplev A.V., Ivanov M.M., Golosov V.N., Konstantinov E.A. Reconstruction of long-term dynamics of Chernobyl-derived 137Cs in the Upa River using bottom sediments in the Schekino reservoir and semi-empirical modelling. Proceedings of International Association of Hydrological Sciences. Moscow; 2019. 381:95-99. https://doi: 10.5194/piahs-381-95-2019
  78. Hayashi S., Tsuji H. Role and effect of a dam on migration of radioactive cesium in a river catchment after the Fukushima Daiichi Nuclear Power Plant accident. Global Environ. Res. 2020;24(2):105-113.
  79. Huon S., Hayashi S., Laceby J.P. et al. Source dynamics of radiocesium-contaminated particulate matter deposited in an agricultural water reservoir after the Fukushima nuclear accident. Sci. Total Environ. 2018;612:1079-1090. https://doi: 10.1016/j.scitotenv.2017.07.205
  80. Kurikami H., Kitamura A., Yokuda S.T., Onishi Y. Sediment and 137Cs behaviors in the Ogaki Dam Reservoir during a heavy rainfall event. J. Environ. Radioact. 2014;137:10-17. https://doi: 10.1016/j.jenvrad.2014.06.013
  81. Yamada S., Kitamura A., Kurikami H. et al. Sediment and 137Cs transport and accumulation in the Ogaki dam of eastern Fukushima. Environ. Res. Lett. 2015;10:1–9. https://doi: 10.1088/1748-9326/10/1/014013
  82. Ivanov M.M., Konoplev A.V., Walling D.E. et al. Using reservoir sediment deposits to reconstruct the longer-term fate of Chernobyl-derived 137Cs fallout in the fluvial system. Environ. Pollut. 2021;274:116588. https://doi: 10.1016/j.envpol.2021.116588
  83. Nagao S., Kanamori M., Ochiai S. et al. Dispersion of Cs-134 and Cs-137 in river waters from Fukushima and Gunma prefectures at nine months after the Fukushima Daiichi NPP accident. Progr. Nucl. Sci. Technol. 2014;4:9-13.
  84. Delmas M., Garcia-Sanchez L., Onda Y. Factors controlling the variability of 137Cs concentrations in 5 coastal rivers around Fukushima Dai-ichi power plant. J. Environ. Radioact. 2019;204:1-11. https://doi.org/10.1016/j.jenvrad.2019.03.013
  85. Hayashi S., Tsuji H., Yumiko I. Effects of forest litter on dissolved 137Cs concentrations in a highly contaminated mountain river in Fukushima. J. Hydrology: Regional Studies. 2022;41:101099. https://doi: 10.1016/j.ejrh.2022.101099
  86. Kitamura A., Yamaguchi M., Kurikami H. et al. Predicting sediment and cesium-137 discharge from catchments in eastern Fukushima. Anthropocene. 2014;5:22–31. doi: 10.1016/j.ancene.2014.07.001
  87. Hilton J. Aquatic radioecology post Chernobyl – a review of the past and look to the future. In Freshwater and Estuarine Radioecology, Desmet G., Blust R.J., Comans R.N.J., Fernandez J.A., Hilton J., De Bettencourt A., Eds. Amsterdam, Netherland: Elsevier, 1997. P. 47–74.
  88. Monte L. A collective model for predicting the long-term behaviour of radionuclides in rivers. Sci. Total Environ. 1997;201:17-29.
  89. Smith J.T., Belova N.V., Bulgakov A.A. et al. The “AQUASCOPE” Simplified model for predicting 89,90Sr, and 134,137Cs in surface waters after a large-scale radioactive fallout. Health Phys. 2005;89:628-644.
  90. Коноплев А.В., Канивец В.И., Жукова О.М. и др. Полуэмпирическая модель смыва радионуклидов с загрязненных водосборов и ее проверка на основе данных мониторинга рек Фукусимы и Чернобыля. Геохимия. 2021. Т. 66. № 6. С. 550–561. doi: 10.31857/S0016752521060029 [Konoplev A.V., Kanivets V.I., Zhukova O.M. et al. Semi-empirical diffusional model of radionuclide wash-off from contaminated watersheds and its testing using monitoring data for Fukushima and Chernobyl rivers. Geochemistry International. 2021;59(6):550-561. (In Russ.). https://doi: 10.1134/S0016702921060021].
  91. Konoplev A., Kanivets V., Laptev G. et al. Long-term dynamics of the Chernobyl-derived radionuclides in rivers and lakes. In: Konoplev A., Kato K., Kalmykov S. N. (Eds.) Behavior of Radionuclides in the Environment II: Chernobyl. SPRINGER Nature, Singapore; 2020. P. 323–348. https://doi.org/10.1007/978-981-15-3568-0_3
  92. Hardie S.M.L., McKinley I.G. Fukushima remediation: status and overview of future plans. J. Environ. Radioact. 2014;133:75-85. https://doi: 10.1016/j.jenvrad.2013.08.002
  93. Howard B.J., Fesenko S.V., Balonov M. et al. A Comparison of Remediation After The Chernobyl and Fukushima Daiichi Accidents. Radiat. Prot. Dosim. 2016;173(1-3):170-176. https://doi: 10.1093/rpd/ncw312
  94. Борзилов В.А., Коноплев А.В., Ревина С.К. и др. Экспериментальное исследование смыва радионуклидов, выпавших на почву в результате аварии на Чернобыльской атомной электростанции. Метеорология и гидрология. 1988. № 11. С. 43-53. [Borzilov V.A., Konoplev A.V., Revina S.K. et al. Experimentalnoe issledovanie smyva radionuklidov, vypavshih na pochvu v rezultate avarii na Chernobylskoi atomnoi stantsii. Meteorologia i gidrologia. 1988;11:43-53. (In Russ.)]
  95. Борзилов В.А., Седунов Ю.С., Новицкий М.А. и др. Физико-математическое моделирование процессов, определяющих смыв долгоживущих радионуклидов с водосборов тридцатикилометровой зоны Чернобыльской АЭС. Метеорология и гидрология. 1989. № 1. C. 5-13. [Borzilov V.A., Sedunov Y.S., Novitsky M.A. et al. Fiziko-matematicheskoe modelirovanie processov, opredelyayuschih smyv dolgozhivuschih radionuklidov c vodosborov tridzatikilometrovoi zony Chernobylskoi AES. Meteorologia i gidrologia. 1989;1:5-13. (In Russ.)]
  96. Tsuji H., Nishikiori T., Yasutaka T. et al. Behavior of dissolved radiocesium in river water in a forested watershed in Fukushima Prefecture. J. Geophys. Res.: Biogeosci. 2016;121(10):2588–2599. https://doi: 10.1002/2016JG003428
  97. Matsuzaki S., Tanaka A., Kohzu A. et al. Seasonal dynamics of the activities of dissolved 137Cs and the 137Cs of fish in a shallow, hypereutrophic lake: Links to bottom-water oxygen concentrations. Sci. Total Environ. 2021;761:143257. https://doi: 10.1016/j.scitotenv.2020.143257
  98. Funaki H., Tsuji H., Nakanishi N. et al. Remobilisation of radiocaesium from bottom sediments to water column in reservoirs in Fukushima, Japan. Sci. Total Environ. 2022;812:152534. https://doi: 10.1016/j.scitotenv.2021.152534
  99. Коноплев А.В., Вакияма Й., Вада Т. и др. Трансформация форм нахождения радиоцезия в прудах ближней зоны АЭС Фукусима-1 и динамика его распределения в системе почва-вода. Метеорология и гидрология. 2021. № 5. С. 38-45. [Konoplev A.V., Wakiyama Y., Wada T. et al. Transformation of radiocesium speciation in ponds at the vicinity of Fukushima Dai-ichi nuclear power plant and dynamics of its distribution in sediment-water system. Russian Meteorology and Hydrology. 2021;46(5):312-318. https://doi: 10.3103/S1068373921040051].
  100. Tsuji H., Funaki H., Watanabe M., Hayashi S. Effects of temperature and oxygen on 137Cs desorption from bottom sediment of a dam lake. Appl. Goechem. 2022;140:105303. https://doi: 10.1016/j.apgeochem.2022.105303
  101. Liu C., Zachara J.M., Qafoku O., Smith S. Effect of temperature on Cs+ sorption and desorption in subsurface sediments at the Hanford Site, USA. Environ. Sci. Technol. 2003;37:2640–2645. https://doi: 10.1021/es026221h
  102. Семенов Н.Н. О некоторых проблемах химической кинетики и реакционной способности. М.: Изд-во АН СССР, 1954. 350 с. [Semenov N.N. Some Problems in Chemical Kinetics and Reactivity. Princeton, NJ (USA): Princeton University Press; 1958. 254 p. (In Russ.)]
  103. Laidler K. J. Chemical Kinetics. 3rd Ed. Harper & Row; 1987. 531 p.
  104. Konoplev A.V., Kaminski S., Klemt E. et al. Comparative study of 137Cs partitioning between solid and liquid phases in Lakes Constance, Lugano and Vorsee. J. Environ. Radioact. 2002;58:1-11.
  105. Kanivets V., Laptev G., Konoplev A. et al. Distribution and dynamics of radionuclides in the Chernobyl cooling pond. In: Konoplev A., Kato K., Kalmykov S. N. (Eds.) Behavior of Radionuclides in the Environment II: Chernobyl. SPRINGER Nature, Singapore; 2020. P. 349–405. https://doi: 10.1007/978-981-15-356-0_8
  106. Ries T., Putyrskaya V., Klemt E. Long-term distribution and migration of 137Cs in a small lake ecosystem with organic rich catchment: A caser study of Lake Vorsee (Southern Germany). J. Environ. Radioact. 2019;198:89-103. https://doi: 10.1016/j.jenvrad.2018.12.017.
  107. Wauters J., Madruga M.J., Vidal M., Cremers A. Solid phase speciation of radiocesium in bottom sediments. Sci. Total Environ. 1996;187:121–130.
  108. Wauters J., Elsen A., Cremers A. et al. Prediction of solid/liquid distribution coefficients of radiocesium in soils and sediments. Part one: A simplified procedure for the solid phase characterization. Appl. Geochem. 1996;11:589–594.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies