Cataractogenic Effects щf Low-Dose Radiation цith Low Let: More not Than There. Report 2. Epidemiological Studies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Radiation damage to the lens is considered to be the third most important effect of radiation, after mortality from cancer and diseases of the circulatory system (ICRP-118). In terms of the effects of low dose radiation with low LET (up to 100 mGy), interest in the problem of cataractogenic disorders is growing, although there is no clarification of the issue. In the present study, two reports attempt to fill this gap. Report 1 reviewed the work on cataractogenic effects of the lowest doses of radiation with low LET in experiments in vitro and in vivo and concluded that there was no significant confirmation of them in animal experiments; Report 2 presents the results of epidemiological studies relevant to the problem. Data are presented on the uncertainties associated with such epidemiological studies: the ambiguity of the relationship between disorders in the lens and the formation of cataracts, their dependence on age, as well as the dependence of the estimation on the accepted system for classifying opacities. These uncertainties have had the consequence that since 1977 the ICRP has proposed five successively decreasing threshold doses (limits) for lens disorders. The dose patterns for radiogenic damage to the lens in the nine exposed groups mentioned in the reviews are considered: victims of atomic bombings (LSS), liquidators of the Chernobyl accident, medical radiologists (rentgenologists, technologists), patients after computed tomography and radiotherapy, industrial radiographers, nuclear industry workers, residents living with an increased radiation background (natural and man-made), for cosmonauts/astronauts and pilots. For some groups, there were statements about the effects of low doses of radiation, however, the presence of a number of epidemiological uncertainties (reverse causality in diagnostic exposure, the contribution of radiation with high LET, UV and solar radiation in cosmonauts/astronauts and pilots, doses above 100 mGy for the upper limit of the studied range in residents, etc.) do not allow us to consider these statements as proven. Therefore, for most exposed groups, a threshold of 300 mGy should be adhered to, regardless of acute or chronic exposure, according to ICRP-118, although due to the precautionary principle, based on the data discussed in Reports 1 and 2, the limit can be reduce to 200 mGy. Exceptions are medical radiologists (rentgenologists, technologists) and industrial radiographers, for whom the cataractogenic effects of low doses (several tens of milligray; working minimum – 20 mGy) can be real. This is probably due to the direct involvement of the organ of vision in professional manipulations with radiation. It is concluded that it is expedient to limit ourselves to these two groups in the future when studying radiogenic disorders in the lens after exposure to low doses of low-LET radiation, while the other groups are unpromising in this regard.

About the authors

A. N. Koterov

State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Author for correspondence.
Email: govorilga@inbox.ru
Russia, Moscow

L. N. Ushenkova

State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
Russia, Moscow

References

  1. UNSCEAR 2010. Report to the General Assembly, with Scientific Annex. Fifty-seventh session, includes Scientific Report: summary of low-dose radiation effects on health. New York, 2011. 106 p.
  2. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP / Ed. J. Valentin. Amsterdam–New York: Elsevier, 2007. 329 p.
  3. ICRP Publication 118. ICRP Statement on tissue reactions and early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. Annals of the ICRP / Ed. by C. H. Clement. Amsterdam–New York: Elsevier, 2012. 325 p.
  4. Kleiman N.J. Radiation cataract // Ann. ICRP. 2012. V. 41. № 3–4. P. 80–97. https://doi.org/10.1016/j.icrp.2012.06.018
  5. International Atomic Energy Agency. Radiation protection and safety of radiation sources: international basic safety standards.; Safety Standards. Series No GSR Part 3.: Vienna: IAEA, 2014. 437 p.
  6. Broughton J., Cantone M.C., Ginjaume M., Shah B., Czarwinski R. Implications of the implementation of the revised dose limit to the lens of the eye: the view of IRPA professionals // Ann. ICRP. 2015. V. 44. № 1. Suppl. 1. P. 138–143. https://doi.org/10.1177/0146645314562325
  7. Dauer L.T., Ainsbury E.A., Dynlacht J. et al. Guidance on radiation dose limits for the lens of the eye: overview of the recommendations in NCRP Commentary No. 26 // Int. J. Radiat. Biol. 2017. V. 93. № 10. P. 1015–1023. https://doi.org/10.1080/09553002.2017.1304669
  8. Dauer L., Blakely E., Brooks A., Hoel D. Epidemiology and mechanistic effects of radiation on the lens of the eye: review and scientific appraisal of the literature // Electric Power Research Institute. Technical Report. 3002003162. Final Report. Newburgh: NY, 2014. 142 p.
  9. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Nuclear and Radiation Studies Board; Committee on Develo-ping a Long-Term Strategy for Low-Dose Radiation Research in the United States. Washington (DC): National Academies Press (US), 2022. 342 p. https://doi.org/10.17226/26434
  10. Котеров А.Н., Ушенкова Л.Н. Катарактогенные эффекты малых доз радиации с низкой ЛПЭ: скорее нет, чем есть. Сообщение 1. Постановка проблемы и эксперименты на животных // Радиац. биология. Радиоэкология. 2023. Т. 63. № 4. С. 341–354. [Koterov A.N., Ushenkova L.N. Cataractogenic effects of low-dose radiation with low LET: more not than there. Report 1. Statement of the problem and experiments on animals // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2023. V. 63. № 4. P. 341–354. (In Russ. Engl. abstr.) https://doi.org/10.31857/S0869803123040045
  11. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования // Мед. радиология и радиац. безопасность. 2013. Т. 58. № 2. С. 5–21. [Koterov A.N. From very low to very large doses of radiation: new data on ranges definitions and its experimental and epidemiological basing // Medits. Radiologiia Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2013. V. 58. № 2. P. 5–21.] (In Russ. Engl. abstr.)
  12. Котеров А.Н., Ушенкова Л.Н., Бирюков А.П., Самойлов А.С. Вопрос о наступлении “Новой эры” в эпидемиологии малых доз радиации (обзор) // Саратовский науч.-мед. журн. 2016. Т. 12. № 4. С. 654–662. [Koterov A.N., Ushenkova L.N., Biryukov A.P., Samoilov A.S. The question of a “New Era in the low Dose Radiation Epidemiology” approach (review) // Saratovskiy nauchno-meditsinskiy zhurnal (Saratov Journal of Medical Scientific Research). 2016. V. 12. № 4. P. 654–662.] (In Russ. Engl. abstr.)
  13. Котеров А.Н., Ушенкова Л.Н., Бирюков А.П. Критерий Хилла “Биологическое правдоподобие”. Интеграция данных из различных дисциплин в эпидемиологии и радиационной эпидемиологии // Радиац. биология. Радиоэкология. 2020. Т. 60. № 5. С. 453–480. [Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s criteria “Biological plausibility”. The data integration from different disciplines in Epidemiology and Radiation Epidemiology // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2020. V. 60. № 5. P. 453–480.]. (In Russ. Engl. abstr.)https://doi.org/10.31857/S0869803120050069
  14. Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s “Biological Plausibility” criterion: integration of data from various disciplines for epidemiology and radiation epidemiology // Biol. Bull. 2021. V. 48. № 11. P. 1991–2014. https://doi.org/10.1134/S1062359021110054
  15. Rajabi A.B., Noohi F., Hashemi H. et al. Ionizing radiation-induced cataract in interventional cardiology staff // Res. Cardiovasc. Med. 2015. V. 4. № 1. Article e25148. 6 p. https://doi.org/10.5812/cardiovascmed.25148
  16. Andreassi M.G., Piccaluga E., Guagliumi G., Del Greco M., Gaita F., Picano E. Occupational health risks in cardiac catheterization laboratory workers // Circ. Cardiovasc. Interv. 2016. V. 9. Art. e003273. 9 p. https://doi.org/10.1161/circinterventions.115.003273
  17. Klein B.E., Klein R.E., Moss S.E. Exposure to diagnostic X-rays and incident age-related eye disease // Ophthalmic Epidemiol. 2000. V. 7. № 1. P. 61–65. https://doi.org/10.1076/0928-6586(200003)711-2FT061
  18. Yuan M.-K., Tsai D.-C., Chang S.-C. et al. The risk of cataract associated with repeated head and neck CT studies: a nationwide population-based study // AJR Am. J. Roentgenol. 2013. V. 201. № 3. P. 626–630. https://doi.org/10.2214/AJR.12.9652
  19. Weinstein O., Sade M.Y., Shelef I. et al. The association between exposure to radiation and the incidence of cata-ract // Int. Ophthalmol. 2021. V. 41. № 1. P. 237–242. https://doi.org/10.1007/s10792-020-01572-5
  20. Ong H.S., Evans J.R., Allan B.D.S. Accommodative intraocular lens versus standard monofocal intraocular lens implantation in cataract surgery // Cochrane Database Syst. Rev. 2014. V. 5. Art. CD009667. https://doi.org/10.1002/14651858.CD009667.pub2
  21. Roodhooft J.M.J. Leading causes of blindness worldwide // Bull. Soc. Belge Ophtalmol. 2002. № 283. P. 19–25.
  22. Hammer G.P., Scheidemann-Wesp U., Samkange-Zeeb F. et al. Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies // Radiat. Environ. Biophys. 2013. V. 52. № 3. P. 303–319. https://doi.org/10.1007/s00411-013-0477-6
  23. Ainsbury E.A., Barnard S., Bright S., Dalke C., Jarrin M., Kunze S et al. Ionizing radiation induced cataracts: recent biological and mechanistic developments and perspectives for future research // Mutat. Res. Rev. Mutat. Res. 2016. V. 770. Pt. B. P. 238–261. https://doi.org/10.1016/j.mrrev.2016.07.010
  24. Hamada N., Fujimichi Y., Iwasaki T. et al. Emerging issues in radiogenic cataracts and cardiovascular disease // J. Radiat. Res. 2014. V. 55. № 5. P. 831–846. https://doi.org/10.1093/jrr/rru036
  25. Hamada N. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence // Int. J. Radiat. Biol. 2017. V. 93. № 10. P. 1024–1034. https://doi.org/10.1080/09553002.2016.1266407
  26. Hamada N., Azizova T.V., Little M.P. An update on effects of ionizing radiation exposure on the eye // Br. J. Radiol. 2020. V. 93. № 1115. Article 20190829. 26 p. https://doi.org/10.1259/bjr.20190829
  27. Ainsbury E.A., Bouffler S.D., Dorr W. et al. Radiation cataractogenesis: a review of recent studies // Radiat. Res. 2009. V. 172. № 1. P. 1–9. https://doi.org/10.1667/RR1688.1
  28. Shore R.E., Neriishi K., Nakashima E. Epidemiological studies of cataract risk at low to moderate radiation do-ses: (not) seeing is believing // Radiat. Res. 2010. V. 174. № 6. P. 889–894. https://doi.org/10.1667/RR1884.1
  29. Averbeck D., Salomaa S., Bouffler S. et al. Progress in low dose health risk research: Novel effects and new concepts in low dose radiobiology // Mutat Res. 2018. V. 776. P. 46–69. https://doi.org/10.1016/j.mrrev.2018.04.001
  30. Thome C., Chambers D.B., Hooker A.M. et al. Deterministic effects to the lens of the eye following ionizing radiation exposure: is there evidence to support a reduction in threshold dose? // Health Phys. 2018. V. 114. № 3. 328–343. https://doi.org/10.1097/HP.0000000000000810
  31. Laskowski L., Williams D., Seymour C., Mothersill C. Environmental and industrial developments in radiation cataractogenesis // Int. J. Radiat. Biol. 2020. V. 26. P. 1–9. https://doi.org/10.1080/09553002.2020.1767820
  32. Little M.P., Azizova T.V., Hamada N. Low- and mode-rate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology // Int. J. Radiat. Biol. 2021. V. 97. № 6. P. 782–803. https://doi.org/10.1080/09553002.2021.1876955
  33. Cucinotta F.A., Manuel F.K., Jones J. et al. Space radiation and cataracts in astronauts // Radiat. Res. 2001. V. 156. № 5. Pt 1. P. 460–466. https://doi.org/10.1667/0033-7587(2001)156[0460:sracia]2.0.co;2
  34. Rafnsson V., Olafsdottir E., Hrafnkelsson J. et al. Cosmic radiation increases the risk of nuclear cataract in airline pilots // Arch. Opthalmol. 2005. V. 123. № 8. P. 1102–1105. https://doi.org/10.1001/archopht.123.8.1102
  35. Klein B.E., Klein R., Linton K.L., Franke T. Diagnostic x-ray exposure and lens opacities: the Beaver Dam Eye Study // Am. J. Public Health. 1993. V. 83. № 4. P. 588–590. https://doi.org/10.2105/ajph.83.4.588
  36. Poon R., Badawy M.K. Radiation dose and risk to the lens of the eye during CT examinations of the brain // J. Med. Imaging Radiat. Oncol. 2019. V. 63. № 6. 786–794. https://doi.org/10.1111/1754-9485.12950
  37. Rehani M.M., Vano E., Ciraj-Bjelac O., Kleiman N.J. Radiation and cataract // Radiat. Prot. Dosimetry. 2011. V. 147. № 1–2. P. 300–304. https://doi.org/10.1093/rpd/ncr299
  38. Picano E., Vano E., Domenici L. et al. Cancer and non-cancer brain and eye effects of chronic low-dose ioni-zing radiation exposure // BMC Cancer. 2012. V. 12. Art. 157. 13 p. https://doi.org/10.1186/1471-2407-12-157
  39. Shore R.E. Radiation impacts on human health: certain, fuzzy, and unknown // Health Phys. 2014. V. 106. № 2. P. 196–205. https://doi.org/10.1097/hp.0000000000000021
  40. Shore R.E. Radiation and cataract risk: impact of recent epidemiologic studies on ICRP judgments // Mutat. Res. Rev. Mutat. Res. 2016. V. 770. Pt. B. P. 231–237. https://doi.org/10.1016/j.mrrev.2016.06.006
  41. Smith Dr.H. The International Commission on Radiological Protection: historical overview // IAEA Bull. 1988. V. 30. № 3. P. 42–44.
  42. Radiation Dosimetry / Ed. G. J. Hine, G. L. Brownell. New York: Academic Press, 1956. 932 p.
  43. Ainsbury E.A., Dalke C., Hamada N. et al. Radiation-induced lens opacities: epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy // Environ. Int. 2021. V. 146. Art. 106213. 14 p. https://doi.org/10.1016/j.envint.2020.106213
  44. Merriam G.R. J.r, Focht E.F. A clinical study of radiation cataracts and the relationship to dose // Am. J. Roentgenol. Radium. Ther. Nucl. Med. 1957. V. 77. № 5. P. 759–785.
  45. Merriam G.R. Jr, Focht E.F. A clinical and experimental study of the effect of single and divided doses of radiation on cataract production // Trans. Am. Ophthalmol. Soc. 1962. V. 60. P. 35–52.
  46. Sparrow J.M., Bron A.J., Brown N.A. et al. The Oxford clinical cataract classification and grading system // Int. Ophthalmol. 1986. V. 9. № 4. P. 207–225. https://doi.org/10.1007/BF00137534
  47. Klein B.E., Klein R., Linton K.L. et al. Assessment of cataracts from photographs in the Beaver Dam Eye Study // Ophthalmology. 1990. V. 97. № 11. P. 1428–1433. https://doi.org/10.1016/s0161-6420(90)32391-6
  48. Chylack L.T. Jr, Wolfe J.K., Singer D.M. et al. The lens opacities classification system III. The longitudinal study of cataract study group // Arch. Ophthalmol. 1993. V. 111. № 6. P. 831–836. https://doi.org/10.1001/archopht.1993.01090060119035
  49. Thylefors B., Chylack L.T. Jr, Konyama K. et al. A simplified cataract grading system // Ophthalmic Epidemiol. 2002. V. 9. № 2. P. 83–95. https://doi.org/10.1076/opep.9.2.83.1523
  50. Azizova T.V., Bragin E.V., Hamada N., Bannikova M.V. Risk of cataract incidence in a cohort of Mayak PA workers following chronic occupational radiation exposure // PLoS One. 2016. V. 11. № 10. Art. e0164357. 13 p. https://doi.org/10.1371/journal.pone.0164357
  51. Nakashima E., Neriishi K., Minamoto A. A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis // Health Phys. 2006. V. 90. № 2. P. 154–60. https://doi.org/10.1097/01.hp.0000175442.03596.63
  52. UNSCEAR 2013. Report to the General Assembly, with Scientific Annexes. Vol. II. Annex B. Effects of radiation exposure of children. United Nations. New York, 2013. 269 p.
  53. Neriishi K., Nakashima E., Minamoto A. et al. Postope-rative cataract cases among atomic bomb survivors: radiation dose response and threshold // Radiat. Res. 2007. V. 168. № 4. P. 404–408. https://doi.org/10.1667/RR0928.1
  54. Azizova T.V., Hamada N., Bragin E.V. et al. Risk of cata-ract removal surgery in Mayak PA workers occupationally exposed to ionizing radiation over prolonged periods // Radiat. Environ. Biophys. 2019. V. 58. № 2. P. 139–149. https://doi.org/10.1007/s00411-019-00787-0
  55. Власов В.В. Эпидемиология: учебное пособие. 2-е изд., испр. М.: ГЭОТАР-Медиа, 2006. 464 с. [Vlasov V.V. Epidemiology. 2nd Edition, revised. Moscow: GEOTAR-Media, 2006. 464 p.] (In Russ.)
  56. Worgul B.V., Kundiyev Y.I., Sergiyenko N.M. et al. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposure // Radiat. Res. 2007. V. 167. № 2. P. 233–243. https://doi.org/10.1667/rr0298.1
  57. Seals K.F., Lee E.W., Cagnon C.H. et al. Radiation-induced cataractogenesis: a critical literature review for the interventional radiologist // Cardiovasc. Intervent. Radiol. 2016. V. 39. № 2. P. 151–160. https://doi.org/10.1007/s00270-015-1207-z
  58. Koterov A.N., Biryukov A.P. The possibility of determining of anomalies and pathologies in the offspring of liquidators of Chernobyl accident by the non-radiation factors // Int. J. Low Radiat. (Paris). 2011. V. 8. № 4. P. 256–312. https://doi.org/10.1504/IJLR.2011.046529
  59. Hamada N., Sato T. Cataractogenesis following high-LET radiation exposure // Mutat. Res. Rev. Mutat. Res. 2016. V. 770. Pt. B.P. 262–291. https://doi.org/10.1016/j.mrrev.2016.08.005
  60. Chodick G., Bekiroglu N., Hauptmann M. et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists // Am. J. Epidemiol. 2008. V. 168. № 6. P. 620–631. https://doi.org/10.1093/aje/kwn171
  61. Webb P., Bain C. Essential Epidemiology. An Introduction for Students and Health Professionals. 2nd Ed. Cambridge etc.: Cambridge University Press, 2011. 445 p.
  62. Epidemiology: Principles and Practical Guidelines / Eds J. Van den Broeck, J.R. Brestoff. Dordrecht: Springer, 2013. 621 p.
  63. Milacic S. Risk of occupational radiation-induced cataract in medical workers // Med. Lav. 2009. V. 100. P. 178–186.
  64. Bouffler S., Ainsbury E., Gilvin P., Harrison J. Radiation-induced cataracts: the Health Protection Agency’s response to the ICRP statement on tissue reactions and recommendation on the dose limit for the eye lens // J. Radiol. Prot. 2012. V. 32. № 4. P. 479–488. https://doi.org/10.1088/0952-4746/32/4/479
  65. Mrena S., Kivela T., Kurttio P., Auvinen A. Lens opacities among physicians occupationally exposed to ioni-zing radiation – a pilot study in Finland // Scand. J. Work Environ. Health. 2011. V. 37. № 3. P. 237–243. https://doi.org/10.2307/41151548
  66. Auvinen A., Kivela T., Heinavaara S., Mrena S. Eye lens opacities among physicians occupationally exposed to ionizing radiation // Ann. Occup. Hyg. 2015. V. 59. № 7. P. 945–948. https://doi.org/10.1093/annhyg/mev022
  67. Coppeta L., Pietroiusti A., Neri A. et al. Risk of radiation-induced lens opacities among surgeons and interventional medical staff // Radiol. Phys. Technol. 2019. V. 12. № 1. P. 26–29. https://doi.org/10.1007/s12194-018-0487-9
  68. Domienik-Andrzejewska J., Kałużny P., Piernik G., Jurewicz J. Occupational exposure to ionizing radiation and lens opacity in interventional cardiologists // Int. J. Occup. Med. Environ. Health. 2019. V. 32. № 5. P. 663–675. https://doi.org/10.13075/ijomeh.1896.01456
  69. Liu G., Zhang R., Li Y., Wu X.Q., Niu L.M., Liu Y.Y., Zhang X. Study of low-dose radiation workers ionizing radiation sensitivity index and radiation dose-effect relationship // Health Phys. 2022. V. 123. № 4. P. 332–339. https://doi.org/10.1097/HP.0000000000001593
  70. Ciraj-Bjelac O., Rehani M.M., Sim K.H. et al. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? // Catheter Cardiovasc. Interv. 2010. V. 76. № 6. P. 826–834. https://doi.org/10.1002/ccd.22670
  71. Vano E., Kleiman N.J., Duran A. et al. Radiation cataract risk in interventional cardiology personnel // Radiat. Res. 2010. V. 174. № 4. P. 490–495. https://doi.org/10.1667/RR2207.1
  72. Jacob S., Donadille L., Maccia C. et al. Eye lens radiation exposure to interventional cardiologists: a retrospective assessment of cumulative doses // Radiat. Prot. Dosim. 2013. V. 153. № 3. P. 282–293. https://doi.org/10.1093/rpd/ncs116
  73. Karatasakis A., Brilakis H.S., Danek B.A. et al. Radiation associated lens changes in the cardiac catheterization laboratory: results from the IC-CATARACT (CATaracts Attributed to Radiation in the CaThlab) study // Catheter Cardiovasc. Interv. 2018. V. 91. № 4. P. 647–654. https://doi.org/10.1002/ccd.27173
  74. Della Vecchia E., Modenese A. Loney T., et al. Risk of cataract in health care workers exposed to ionizing radiation: a systematic review // Med. Lav. 2020. V. 111. № 4. P. 269–284. https://doi.org/10.23749/mdl.v111i4.9045
  75. Elmaraezy A., Morra M.E., Mohammed A.T. et al. Risk of cataract among interventional cardiologists and catheterization lab staff: A systematic review and meta-analysis // Catheter Cardiovasc. Interv. Actions. 2017. V. 90. № 1. P. 1–9. https://doi.org/10.1002/ccd.27114
  76. Коренков И.П., Охрименко С.Е., Шандала Н.К. и др. Оценка доз облучения хрусталика глаза и кожи персонала в современных медицинских технологиях // Мед. радиология и радиац. безопасность. 2022. Т. 67. № 1. С. 44–49. [Korenkov I.P., Okhrimenko S.E., Shandala N.K. et al. Dose assessment to the lens of the eye and skin of the personnel in advanced medical technologies // Medits. Radiologiia Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2022. V. 67. № 1. P. 44–49.] (In Russ. Engl. abstr.)https://doi.org/10.12737/1024-6177-2022-67-1-44-49
  77. UNSCEAR 1982. Report to the General Assembly, with Scientific Annexes. Annex J. Non-stochastic effects of irradiation. United Nations. New York, 1982. P. 571–654.
  78. Львовская Е.Н. Состояние глаз у лиц, работающих на рентгено-радиологических учреждениях г. Москвы // Cб. научн. трудов “Научно-исследовательского института гигиены труда и профзаболеваний” АМН СССР (НИИГТ и ПЗ АМН СССР). М., 1974. С. 209–214. [Lvovskaya E.N. The state of the eye in persons working at roentgen-radiological facilities in Moscow // Proc. “Scientific Research Institute of Occupational Hygiene and Diseases” of the Academy of Medical Sciences of USSR. Moscow, 1974. P. 209–214. (In Russ.)]
  79. UNSCEAR 1982. Report to the General Assembly, with Scientific Annexes. Annex G Medical exposures. United Nations. New York, 1982. P. 333–369.
  80. UNSCEAR 1988. Report to the General Assembly, with Scientific Annexes. Annex C Exposures from medical uses of radiation. United Nations. New York, 1988. P. 241–308.
  81. UNSCEAR 1993. Report to the General Assembly, with Scientific Annexes. Annex C Medical radiation exposures. United Nations. New York, 1993. P. 221–373.
  82. Klein R., Klein B.E.K., Moss S.E. Age related eye disease and survival. The Beaver Dam Eye Study // Arch. Ophthalmol. 1995. V. 113. № 3. P. 333–339. https://doi.org/10.1001/archopht.1995.01100030089026
  83. Hourihan F., Mitchell P., Cumming R.G. Possible associations between computed tomography scan and cataract: the Blue Mountains Eye Study // Am. J. Public Health. 1999. V. 89. № 12. P. 1864–1866. https://doi.org/10.2105/ajph.89.12.1864
  84. Gaudreau K., Thome C., Weaver B., Boreham D.R. Cataract formation and low-dose radiation exposure from head computed tomography (CT) scans in Ontario, Canada, 1994–2015 // Radiat. Res. 2020. V. 193. № 4. P. 322–330. https://doi.org/10.1667/RR15504.1
  85. UNSCEAR 2000. Report to the General Assembly, with Scientific Annexes. Annex D Medical radiation exposures. United Nations. New York, 2000. P. 221–373.
  86. Котеров А.Н., Ушенкова Л.Н., Бирюков А.П. Критерий Хилла “Временная зависимость”. Обратная причинность и ее радиационный аспект // Радиац. биология. Радиоэкология. 2020. Т. 60. № 2. С. 115–152. [Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s criteria “Temporality”. Reverse causation and its radiation aspect // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2020. V. 60. № 2. P. 115–152. (In Russ. Engl. abstr.)] https://doi.org/10.31857/S086980312002006X
  87. Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s Temporality criterion: reverse causation and its radiation aspect // Biol. Bull. (Moscow). 2020. V. 47. № 12. 1577–1609. https://doi.org/10.1134/S1062359020120031
  88. Doss M. Conclusion of increased risk of cataracts associated with CT studies of the head may not be justified (Letter) // AJR Am. J. Roentgenol. 2014. V. 202. № 4. P. W413. https://doi.org/10.2214/AJR.13.11867
  89. Gutman, Treutler. Bericht uber die 32 Versammlung der ophtlialmologischen Gesellschaft, Wiesbaden 1905, Heidelberg 1906. S. 337–338.
  90. Gutman, Treutler. Diskussionsbemerkung zum Vortrag von E. v. Hippel jun. Uber angeborenen Zentral und Schichtstar – experimentelle Untersuchungen // Ber. Dtsch. Ophtalmol. Ges. 1906. V. 32. S. 338.
  91. Quist C.F., Zachau-Christiansen B. Radiation cataract following fractionated radium therapy in childhood // Acta Radiol. 1959. V. 51. № 3. P. 207–216. https://doi.org/10.3109/00016925909171098
  92. Desjardins A.U. Action of roentgen rays and radium on the eye and ear; experimental data and clinical radiotherapy // AJR Am. J. Roentgenol. 1931. V. 26. P. 639–921.
  93. Clapp C.A. Effect of X-ray and radium radiation upon crystalline lens // Am. J. Ophthal. 1932. V. 15. P. 1039–1044.
  94. UNSCEAR 1962. Report to the General Assembly, with Scientific Annexes. Annex D. Somatic effects of irradiation. United Nations. New York, 1962. P. 118–206.
  95. Merriam G.R., Jr., Focht E.F. Radiation dose to the lens in treatment of tumors of the eye and adjacent structures // Radiology. 1958. V. 71. № 3. P. 357–369. https://doi.org/10.1148/71.3.357
  96. Thariat J., Martel A., Matet A. et al. Non-Cancer Effects following Ionizing Irradiation Involving the Eye and Orbit // Cancers (Basel). 2022. V. 14. № 5. Art. 1194. 21 p. https://doi.org/10.3390/cancers14051194
  97. Chodick G., Sigurdson A.J., Kleinerman R.A. et al. The risk of cataract among survivors of childhood and adolescent cancer: a report from the Childhood Cancer Survivor Study // Radiat. Res. 2016. V. 185. № 4. P. 366–374. https://doi.org/10.1667/RR14276.1
  98. Hall P., Granath F., Lundell M. et al. Lenticular opacities in individuals exposed to ionizing radiation in infancy // Radiat. Res. 1999. V. 152. № 2. P. 190–195. https://doi.org/10.2307/3580093
  99. Львовская Е.Н. Состояние глаз у лиц, работающих в промышленной гамма-дефектоскопии // Тр. Московского областного научно-исследовательского клинического института им. М.Ф. Владимирского” (МОНИКИ). 1976. Т. 12. С. 44–48. [Lvovskaya E.N. The state of the eye in persons working in industrial gamma-defectoscopy // Proc. of MONIKI. 1976. V. 12. P. 44–48.] (In Russ.)
  100. Lian Y., Xiao J., Ji X. et al. Protracted low-dose radiation exposure and cataract in a cohort of Chinese industry radiographers // Occup. Environ. Med. 2015. V. 72. № 9. 640–647. https://doi.org/10.1136/oemed-2014-102772
  101. Hashemi H., Pakzad R., Yekta A. et al. Global and regional prevalence of age-related cataract: a comprehensive systematic review and meta-analysis // Eye. 2020. V. 34. № 8. P. 1357–1370. https://doi.org/10.1038/s41433-020-0806-3
  102. Бекман И.Н. Ядерная индустрия. Курс лекций. М.: Изд-во МГУ, 2005. 867 с. [Beckman I.N. Nuclear industry. Lecture course. Moscow: Publishing house of Moscow State University, 2005. 867 p. (In Russ.)]
  103. Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г. и др. Избыточный относительный риск катарактогенных нарушений хрусталика у работников ядерной индустрии: систематический обзор и мета-анализ // Мед. радиология и радиац. безопасность. 2023. Т. 68. № 3. С. 21–32. [Koterov A.N., Ushenkova L.N., Dibirgadzhiev I.G. et al. Excess relative risk of cataractogenic lense disorders in nuclear workers: systematic review and meta-analysis // Medits. Radiologiia Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2023; 68(3): 21–32.] (In Russ.). https://doi.org/10.33266/1024-6177-2023-68-3-21-32
  104. Котеров А.Н., Вайнсон А.А. Конъюнктурный подход к понятию о диапазоне малых доз радиации с низкой ЛПЭ в зарубежных обзорных источниках: нет изменений за 18 лет // Мед. радиология и радиац. безопасность. 2022. Т. 67. № 5. С. 33–40. [Koterov A.N., Wainson A.A. Conjunctural approach to the concept of low dose radiation range with low LET in foreign review sources: no changes for 18 years // Medits. Radiologiia Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2022; 67(5): 33–40.] (In Russ. Engl. abstr.)https://doi.org/10.33266/1024-6177-2022-67-5-33-40
  105. Voelz G.L. Eye-survey study of nuclear-reactor workers // J. Occup. Med. 1967. V. 9. № 6. P. 286–292.
  106. Jacobson B.S. Cataracts in retired actinide-exposed radiation workers // Radiat. Prot. Dosim. 2005. V. 113. № 1. P. 123–125. https://doi.org/10.1093/rpd/nch427
  107. Азизова Т.В., Брагин Е.В., Хамада Н., Банникова М.В. Оценка риска заболеваемости старческой катарактой в когорте работников предприятия атомной промышленности ПО “Маяк” // Мед. радиология и радиац. безопасность. 2018. Т. 63. № 4. С. 15–21. [Azizova T.V., Bragin E.V., Hamada N., Bannikova M.V. Risk assessment of senile cataract incidence in a cohort of nuclear workers of Mayak Production Association // Medits. Radiologiia Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2018. V. 63. № 4. P. 15–21. (In Russ. Engl. abstr.)] https://doi.org/10.12737/article-5b83b0430902e8.35861647
  108. Azizova T.V., Hamada N., Grigoryeva E.S., Bragin E.V. Risk of various types of cataracts in a cohort of Mayak workers following chronic occupational exposure to ionizing radiation // Eur. J. Epidemiol. 2018. V. 33. № 12. P. 1193–1204. https://doi.org/10.1007/s10654-018-0450-4
  109. Азизова Т.В., Хамада Н., Григорьева Е.С., Брагин Е.В. Риск катаракты различных типов в когорте работников, подвергшихся профессиональному хроническому облучению // Мед. радиология и радиац. безопасность. 2020. Т. 65. № 4. С. 48–57. [Azizova T.V., Hamada N., Grigoryeva E.S., Bragin E.V. Risk of various types of cataracts in a cohort of Mayak wor-kers following chronic occupational exposure to ioni-zing radiation. Medits. Radiologiia Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2020. V. 65. № 4. P. 48–57. (In Russ. Engl. abstr.)] https://doi.org/10.12737/1024-6177-2020-65-4-48-57
  110. Брагин Е.В., Азизова Т.В., Банникова М.В. Риск заболеваемости старческой катарактой у работников предприятия атомной промышленности // Вестн. офтальмологии. 2017. Т. 133. № 2. С. 57–63. [Bragin E.V., Azizova T.V., Bannikova M.V. Risk of senile cataract among nuclear industry workers // Vestnik Oftalmologii (The Russian Annals of Ophthalmo-logy; Moscow). 2017. V. 133. № 2. P. 57–63.] (In Russ. Engl. abstr.)https://doi.org/10.17116/oftalma2017133257-63
  111. Туков А.Р., Шафранский И.Л., Капитонова Н.В. и др. Риск развития катаракты в условиях острого и хронического облучения // Саратовский научю-мед. журн. 2016. Т. 12. № 4. С. 678–684. [Tukov A.R., Shafransky I.L., Kapitonova N.V. et al. Risk of cataract in the context of acute and chronic exposure. Saratovskiy nauchno-meditsinskiy zhurnal // Saratov Journal of Medical Scientific Research. 2016. V. 12. № 4. P. 678–684.] (In Russ. Engl. abstr.)
  112. Туков А.Р., Шафранский И.Л., Прохорова О.Н., Зиятдинов М.Н. Риск развития радиационной катаракты у работников атомной промышленности – участников ликвидации последствий аварии на ЧАЭС // Радиация и риск. 2019. Т. 28. № 1. С. 37–46. [Tukov A.R., Shafransky I.L., Prohorova O.N., Ziyatdinov M.N. The incidence of cataracts and the radiation risk of their occurrence in liquidators of the Chernobyl accident, workers in the nuclear industry // Radiatsiya i Risk (Radiation and Risk; Obninsk). 2019. V. 28. № 1. P. 37–46. (In Russ. Engl. abstr.)] https://doi.org/10.21870/0131-3878-2019-28-1-37-46
  113. Казымбет П.К., Джанабаев Д.Д., Сайфулина Е.A. и др. Оценка риска соматических заболеваний в когорте работников урановой промышленности, подвергающихся радиационному воздействию в малых дозах. Сообщение II // Наука и здравоохранение. 2019. Т. 21. № 5. С. 81–87. [Kazymbet P.K., Dzhanabayev D.D., Saifulina E.A. et al. Risk assessment of somatic diseases in the cohort of uranium industry workers exposed to radiation in small doses. Report II. Nauka i zdravookhraneniye (Science & Healthcare; Kazakhstan). 2019. V. 21. № 5. P. 81–87.] (In Russ. Engl. abstr.)
  114. Park S., Lee D.N., Jin Y.W. et al. Non-cancer disease prevalence and association with occupational radiation exposure among Korean radiation workers // Sci. Rep. 2021. V. 11. № 1. Article 22415. 8 p. https://doi.org/10.1038/s41598-021-01875-2
  115. UNSCEAR 2020. Report to the General Assembly, with Scientific Annexes. Annex B. Levels and effects of radiation exposure due to the accident at the Fukushima Daiichi Nuclear Power Station: implications of information published since the UNSCEAR 2013 Report. United Nations. New York, 1982. 243 p.
  116. Шафиркин А.В., Григорьев Ю.Г. Межпланетные и орбитальные космические полеты. Радиационный риск для астронавтов. Радиобиологическое обоснование. М.: ЗАО “Изд-во “Экономика”, 2009. 640 с. [Shafirkin A.V., Grigoriev Y.G. Interplanetary and Orbital Space Flights: the Radiation Risk to Astronauts (Radiobiological Basis). Moscow: Publi-shing house “Economica”, 2009. 639 p.] (In Russ. Engl. abstr.)
  117. Галеева Г.З., Рыжкин С.А., Сергеева С.Ю. Воздействие ионизирующего излучения на человека и орган зрения // Практич. медицина. 2016. № 7 (99) С. 37–41. [Galeeva G.Z., Ryzhkin S.A., Sergeeva S.Yu. Effects of ionizing radiation on the human body and the organ of vision // Prakticheskaya meditsina (Practical medicine; Kazan). 2016. № 7 (99). P. 37–41.] (In Russ. Engl. abstr.)
  118. Yeltokova M.H. Risk of cataract after exposure to low doses of ionizing radiation // J. Clin. Med. Kazakhstan. 2013. V. 3. № 29. P. 58–61.
  119. Лазаретник Б.Ш., Бакбардин Ю.В., Гребенник А.В. Орган зрения как возможный показатель преждевременного старения при радиационном поражении // Офтальмол. журн. 1993. № 3. С. 129–132. [Lazaretnik B.Sh., Bakbardin Yu.V., Grebennik A.V. Organ of vision state as a possible indicator of premature aging under radiation exposure // Oftal’mologicheskiy zhurnal (Journal of Ophthalmology; Odessa). 1993. №. 3. P. 129–132.] (In Russ. Engl. abstr.)
  120. Сухина Л.А., Смирнова А.Ф., Чубарь С.В., Али З. О значении углубленного обследования органа зрения лиц, подвергающихся влиянию ионизирующей радиации // Офтальмол. журн. 1993. № 3. С. 133–135. [Sukhina L.A., Smirnova A.F., Chubar S.V., Ali Z. On the importance of an in-depth examination of the organ of vision of persons exposed to ionizing radiation // Oftal’mologicheskiy zhurnal (Journal of Ophthalmology; Odessa). 1993. № 3. P. 133–135.] (In Russ. Engl. abstr.)
  121. Chumak V.V., Worgul B.V., Kundiyev Y.I. et al. Dosi-metry for a study of low-dose radiation cataracts among Chernobyl cleanup workers // Radiat. Res. 2007. V. 167. № 5. P. 606–614. https://doi.org/10.1667/RR0302.1
  122. Котеров А.Н., Бирюков А.П. Дети ликвидаторов аварии на Чернобыльской атомной электростанции. 1. Оценка принципиальной возможности зарегистрировать радиационные эффекты // Мед. радиология и радиац. безопасность. 2012. Т. 57. № 1. С. 58–79. [Koterov A.N., Biryukov A.P. The offspring of liquidators of Chernobyl Atomic Power Station accident. 1. The estimation of the basic opportunity to register of radiation effect // Medits. Radiologiya Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2012. V. 57. № 1. P. 58–79.] (In Russ. Engl. abstr.)
  123. Котеров А.Н., Бирюков А.П. Дети участников ликвидации последствий аварии на Чернобыльской атомной электростанции. 2. Частота отклонений и патологий и их связь с нерадиационными факторами // Мед. радиология и радиац. безопасность. 2012. Т. 57. № 2. С. 51–77. [Koterov A.N., Biryukov A.P. The offspring of liquidators of Chernobyl Atomic Power Station accident. 2. The frequency of anomalies and pathologies and its connection to non-radiation factors // Medits. Radiologiya Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2012. V. 57. № 2. P. 51–77.] (In Russ. Engl. abstr.)
  124. UNSCEAR 2008. Report to the General Assembly, with Scientific Annex. Annex D. Health effects due to radiation from the Chernobyl accident. United Nations. New York, 2011. P. 47–219.
  125. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Экологические (корреляционные) исследования в дисциплинах радиационного и нерадиационного профиля: “птица Феникс” // Cб. докл. межд научн.-практ. конф. “Радиоэкологические последствия радиационных аварий: к 35-ой годовщине аварии на ЧАЭС”. Обнинск, 22–23 апреля 2021 г. / Под ред. Н.И. Санжаровой и В.М. Шершакова. Обнинск, 2021. С. 185–190. [Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Ecological (correlation) studies in the disciplines of radiation and nonradiation profile: “Phoenix bird” // Materials of International Research and Practice Conference “Radioecological Consequences of Radiation Accidents: to the 35th anniversary of the Chernobyl accident”. Obninsk, 2021. P. 185–190.] (In Russ. Engl. abstr.)
  126. Day R., Gorin M.B., Eller A.W. Prevalence of lens changes in Ukrainian children residing around Chernobyl // Health Phys. 1995. V. 68. № 5. P. 632–642. https://doi.org/10.1097/00004032-199505000-00002
  127. Lehmann P., Boratynski Z., Mappes T. et al. Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl // Sci Rep. 2016. V. 6. Art. 19974. 7 p. https://doi.org/10.1038/srep19974
  128. Pederson S.L., Margaret C., Puma L. et al. Effects of chronic low-dose radiation on cataract prevalence and characterization in wild boar (Sus scrofa) from Fukushima, Japan // Sci. Rep. 2020. V. 10. № 1. Art. 4055. 14 p. https://doi.org/10.1038/s41598-020-59734-5
  129. Mikryukova L.D., Akleyev A.V. Cataract in the chronically exposed residents of the Techa riverside villages // Radiat. Environ. Biophys. 2017. V. 56. № 4. P. 329–335. https://doi.org/10.1007/s00411-017-0702-9
  130. Chen W.L., Hwang J.S., Hu T.H. et al. Lenticular opa-cities in populations exposed to chronic low-dose-rate gamma radiation from radiocontaminated buildings in Taiwan // Radiat. Res. 2001. V. 156. № 1. P. 71–77. https://doi.org/10.1667/0033-7587(2001)156[0071:loipet]2.0.co;2
  131. Blakely E.A., Kleiman N.J., Neriishi K. et al. Radiation cataractogenesis: epidemiology and biology // Radiat. Res. 2010. V. 173. № 5. P. 709–717. https://doi.org/10.1667/RRXX19.1
  132. Tang F.R., Loganovsky K. Low dose or low dose rate ionizing radiation-induced health effect in the human // Environ. Radioact. 2018. V. 192. P. 32–47. https://doi.org/10.1016/j.jenvrad.2018.05.018
  133. Hsieh W.A., Lin I-F., Chang W.P. et al. Lens opacities in young individuals long after exposure to protracted low-dose-rate γ radiation in 60Co-contaminated buildings in Taiwan // Radiat. Res. 2010. V. 173. № 2. P. 197–204. https://doi.org/10.1667/RR1850.1
  134. Su Y., Wang Y., Yoshinaga S., Zhu W. et al. Lens opacity prevalence among the residents in high natural background radiation area in Yangjiang, China // J. Radiat. Res. 2021. V. 62. № 1. P. 67–72. https://doi.org/110.1093/jrr/rraa073
  135. Нижников А.И., Миретский Г.И., Рамзаев П.В., Троицкая М.Н. Радиационный фон и заболеваемость катарактой у жителей Крайнего Севера// Гиг. санит. 1984. № 7. С. 30–32. [Nizhnikov A.I., Miretskii G.I., Ramzaev P.V., Troitskaia M.N. Background radiation and the incidence of cataract among inhabitants of the Far North // Gig. Sanit. 1984. № 7. P. 30–32.] (In Russ.)
  136. Nicholas J.S., Butler G.C., Lackland D.T., Tessier G.S., Mohr L.C. Jr, Hoel D.G. Health among commercial airline pilots // Aviat. Space Environ. Med. 2001. V. 72. № 9. P. 821–826.
  137. Boice J.D. Jr., Blettner M., Auvinen A. Epidemiologic studies of pilots and aircrew // Health Phys. 2000. V. 79. № 5. P. 576–584. https://doi.org/10.1097/00004032-200011000-00016
  138. Rastegar N., Eckart P., Mertz M. Radiation-induced cataract in astronauts and cosmonauts // Graefes Arch. Clin. Exp. Ophthalmol. 2002. V. 240. № 7. P. 543–547. https://doi.org/10.1007/s00417-002-0489-4
  139. Jones J.A., McCarten M., Manuel K. et al. Cataract formation mechanisms and risk in aviation and space crews // Aviat. Space Environ. Med. 2007. V. 78. № 4. Suppl. P. A56–A66.
  140. Chylack L.T. Jr, Peterson L.E., Feiveson A.H. et al. NASA study of cataract in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity // Radiat. Res. 2009. V. 172. № 1. P. 10–20. https://doi.org/10.1667/RR1580.1
  141. Chylack L.T. Jr, Feiveson A.H., Peterson L.E. et al. NASCA report 2: longitudinal study of relationship of exposure to space radiation and risk of lens opacity // Radiat. Res. 2012. V. 178. № 1. P. 25–32. https://doi.org/10.1667/RR2876.1
  142. Шафиркин А.В., Григорьев Ю.Г., Ушаков И.Б. Уточнение относительной биологической эффективности воздействия быстрых нейтронов и ускоренных многозарядных ионов в малых дозах при оценке риска повреждения нейронов головного мозга и хрусталика глаза // Авиакосм. и экол. медицина. 2019. Т. 53. № 1. С. 23–32. [Shafirkin A.V., Grigoriev Yu.G., Ushakov I.B. More precise definition of the relative biological effectiveness of fast neutrons and accelerated multi-charged ions at low doses for estimation of the risk of brain and lens injury by neutrons // Aviakosmicheskaya i ekologicheskaya meditsina (Aerospace and environmental medicine; Moscow). 2019. V. 53. № 1. P. 23–32. (In Russ. Engl. abstr.)] https://doi.org/10.21687/0233-528X-2019-53-1-23-32
  143. Абросимова А.Н., Шафиркин А.В., Федоренко Б.С. Вероятность развития помутнений хрусталика и образования зрелых катаракт при действии излучений с различными значениями ЛПЭ // Авиакосм. и экол.медицина. 2000. Т. 34. № 3. С. 33–41. [Abrosimova A.N., Shafirkin A.V., Fedorenko B.S. The likelihood of developing cataract formation and mature cataracts under the action of radiation with diffe-rent LET // Aviakosmicheskaya i ekologicheskaya meditsina (Aerospace and environmental medicine; Moscow). 2000. V. 34. № 3. P. 33–41.] (In Russ. Engl. abstr.)
  144. Григорьев Ю.Г., Ушаков И.Б., Красавин Е.А. и др. Космическая радиобиология за 55 лет (к 50-летию ГНЦ К 71 РФ – ИМБП РАН). Российская академия наук, Институт медико-биологических проблем и др. М.: Экономика, 2013. 303 с. [Grigoriev Yu.G., Ushakov I.B., Krasavin E.A. et al. Space radiobiology for 55 years (on the occasion of the 50th anniversary of the SSC K 71 RF – IBMP RAS). Russian Academy of Sciences, Institute of Biomedical Problems, etc. Moscow: Economics, 2013. 303 p.] (In Russ.)
  145. Jacob S., Michael M., Brezlin A. et al. Ionizing radiation as a risk factor for cataract: what about low-dose effects? // Clin. Exp. Ophthalmol. 2011. Suppl. 1: 005. 7 p. https://doi.org/10.4172/2155-9570.S1-005
  146. Sigurdson A.J., Ron E. Cosmic radiation exposure and cancer risk among flight crew // Cancer Invest. 2004. V. 22. № 5. P. 743–761. https://doi.org/10.1081/cnv-200032767
  147. Котеров А.Н. Заклинания о нестабильности генома после облучения в малых дозах // Мед. радиология и радиац. безопасность. 2004. Т. 49. № 4. С. 55–72. [Koterov A.N. Genomic instability spells for low dose exposure // Medits. Radiologiya Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2004. V. 49. № 4. P. 55–72.] (In Russ. Engl. abstr.)
  148. Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 1. Постановка проблемы, понятие о причинах и причинности, ложные ассоциации // Радиац. биология. Радиоэкология. 2019. Т. 59. № 1. С. 1–32. [Koterov A.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 1. Problem statement, conception of causes and causation, false associations // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2019. V. 59. № 1. P. 1–32 (In Russ. Engl. abstr.)] https://doi.org/10.1134/S0869803119010065
  149. Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 3. Часть 1: Первые пять критериев Хилла: использование и ограничения // Радиац. биология. Радиоэкология. 2021. Т. 61. № 3. С. 300–332. [Koterov A.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 3, Part 1: First five Hill’s criteria: use and limitations // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2021. V. 61. № 3. P. 300–332. (In Russ. Engl. abstr.)] https://doi.org/10.31857/S0869803121030085
  150. Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 3. Часть 2: Последние четыре критерия Хилла: использование и ограничения // Радиац. биология. Радиоэкология. 2021. Т. 61. № 6. С. 563–607. [Koterov A.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 3, Part 2: Last four Hill’s criteria: use and limitations // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2021. V. 61. № 6. P. 563–607.] 2021. Т. 61. № 6. С. 563–607. (In Russ. Engl. abstr.)] https://doi.org/10.31857/S0869803121060060
  151. Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 4, часть 3: Широта использования критериев в различных дисциплинах и разными организациями // Радиац. биология. Радиоэкология. 2022. Т. 62. № 5. С. 453–476. [Koterov A.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 4, Part 3: Breadth of the use of criteria in different disciplines and different organizations // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2022. V. 62. № 5. P. 453–476. (In Russ. Engl. abstr.)] https://doi.org/10.31857/S0869803122050071
  152. Hill B.A. The environment and disease: association or causation? // Proc. R. Soc. Med. 1965. V. 58. № 5. P. 295–300. https://doi.org/10.1177/0141076814562718
  153. Котеров А.Н., Ушенкова Л.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 4, часть 2: Иерархии критериев, их критика и иные методы установления проичинности // Радиац. биология. Радиоэкология. 2022. Т. 62. № 4. С. 339–398. [Koterov A.N., Ushenkova L.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 4, Part 2: Hierarchy of criteria, their criticism and other methods for causation establishing // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2021. V. 61. № 4. P. 339–398. (In Russ. Engl. abstr.)] https://doi.org/10.31857/S0869803122040051

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (29KB)
3.

Download (44KB)
4.

Download (264KB)
5.

Download (143KB)
6.

Download (37KB)
7.

Download (44KB)
8.

Download (514KB)

Copyright (c) 2023 А.Н. Котеров, Л.Н. Ушенкова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies