Ionizing Radiation and Inflammatory Reaction. Formation Mechanisms and Implications

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ionizing radiation induces a complex of genetic, biochemical, structural and functional changes in the body. The inflammatory response development is acknowledged as one of the manifestations of systemic bodily response to ionizing radiation exposure, and this response, through the activation of immunity, acts both as protector and leads to the development of undesirable early, delayed and off-target effects. Its underlying molecular and cellular mechanisms are defined by DNA damage, free radical metabolic changes (primarily reactive oxygen and nitrogen species), oxidative stress development, inflammasome activation, “danger signals” release and pro-inflammatory cytokines production. The role of non-apoptotic cell death forms (ferroptosis and pyroptosis) is described in the genesis of post-radiation inflammatory response and subsequent tissue, organ, and system damages. The post-radiation inflammatory reaction’s ability to take form of a time-stable self-sustaining process – that increases the radiation-induced damage severity – due to the presence of a positive feedback between different components of its pathogenesis is noted.

About the authors

D. B. Ponomarev

State Scientific Research Test Institute of Military Medicine

Email: alexseleznov@list.ru
Russia, Saint Petersburg

A. V. Stepanov

State Scientific Research Test Institute of Military Medicine

Email: alexseleznov@list.ru
Russia, Saint Petersburg

A. B. Seleznyov

State Scientific Research Test Institute of Military Medicine

Author for correspondence.
Email: alexseleznov@list.ru
Russia, Saint Petersburg

E. V. Ivchenko

Kirov Military Medical Academy

Email: alexseleznov@list.ru
Russia, Saint Petersburg

References

  1. Радиационная медицина. Руководство для врачей-исследователей, организаторов здравоохранения и специалистов по радиационной безопасности. Теоретические основы радиационной медицины. Т. 1. М.: Изд. АТ, 2004. 992 с. [Radiacionnaja medicina. Rukovodstvo dlja vrachej-issledovatelej, organizatorov zdravoohranenija i specialistov po radiacionnoj bezopasnosti. Teoreticheskie osnovy radiacionnoj mediciny. V. 1. M.: Izd. AT, 2004. 992 p. (In Russ.)]
  2. Schaue D., Micewicz E.D., Ratikan J.A. et al. Radiation & Inflammation // Seminars in Radiation Oncology. 2015. V. 25. № 1. P. 4–10. https://doi.org/10.1016/j.semradonc.2014.07.007
  3. Mukherjee D., Coates Ph.J., Lorimore S.A. et al. Responses to ionizing radiation mediated by inflammatory mechanisms // J. Pathol. 2014. V. 232. № 3. P. 289–99. https://doi.org/10.1002/path.4299
  4. Multhoff G., Radons J. Radiation, Inflammation, and Immune Responses in Cancer // Front Oncol. 2012. V. 2. P. 58. https://doi.org/10.3389/fonc.2012.00058
  5. Yahyapour R., Amini P., Rezapour S. et al. Radiation-induced inflammation and autoimmune diseases // Milit. Med. Res. 2018. V. 5. P. 9. https://doi.org/10.1186/s40779-018-0156-7
  6. Mavragani I.V., Laskaratou D.A., Frey B. et al. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review // Toxicol. Res. (Camb). 2016. V. 5. № 1. P. 12–33. https://doi.org/10.1039/c5tx00222b
  7. Тимофеев-Ресовский Н.В., Савич А.В., Шальнов М.И. Введение в молекулярную радиобиологию (физико-химические основы). М.: Медицина, 1981. 320 с. [Timofeev-Resovskij N.V., Savich A.V., Shal’nov M.I. Vvedenie v molekuljarnuju radiobiologiju (fiziko-himicheskie osnovy). M.: Medicina, 1981. 320 p. (In Russ.)]
  8. Azzam E.I., Jay-Gerin J.-P., Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury // Cancer Lett. 2012. V. 327. P. 48–60. https://doi.org/10.1016/j.canlet.2011.12.012
  9. Gorbunov N.V., Sharma P. Protracted oxidative altera-tions in the mechanism of hematopoietic acute radiation syndrome // Antioxidants (Basel). 2015 V. 4. № 1. P. 134–52. https://doi.org/10.3390/antiox4010134
  10. Долин П.И. Время жизни промежуточных состояний, возникающих при действии излучений на водные растворы // Роль перекисей и кислорода в начальных стадиях радиобиологического эффекта. М.: Изд-во АН СССР, 1960. С. 20–25. [Dolin P.I. Vremja zhizni promezhutochnyh sostojanij, voznikajushhih pri dejstvii izluchenij na vodnye rastvory // Rol’ perekisej I kisloroda v nachal’nyh stadijah radiobiolo-gicheskogo effekta. M.: Izd-vo AN USSR, 1960. P. 20–25. (InRuss.)]
  11. Кузин А.М. О роли образования перекисей при действии радиации на биологические объекты // Роль перекисей и кислорода в начальных стадиях радиобиологического эффекта. М.: Изд-во АН СССР, 1960. С. 3–8. [Kuzin A.M. O roli obrazovanija perekisej pri dejstvii radiacii na biologicheskie ob’ekty // Rol’ perekiseji kisloroda v nachal’nyh stadijah radiobiologicheskogo effekta. M.: Izd-vo AN USSR, 1960. P. 3–8. (In Russ.)
  12. Adjemian S., Oltean T., Martens S. et al. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death // Cell Death Dis. 2020. V. 11. № 11. P. 1003. https://doi.org/10.1038/s41419-020-03209-y
  13. Оксидативный стресс и воспаление: патогенетическое партнерство: Монография / Под ред. О. Г. Хурцилавы, Н. Н. Плужникова, Я. А. Накатиса. СПб.: Изд-во СЗГМУ им. И. И. Мечникова, 2012. 340 с. [Oksidativnyj stress i vospalenie: patogeneticheskoe partnerstvo: Monografija / Pod red. O. G. Hurcilavy, N. N. Pluzhnikova, Ja. A. Nakatisa. SPb.: Izdatel’stvo SZGMU im. I. I. Mechnikova, 2012. 340 p. (In Russ.)]
  14. Мартусевич А.К., Карузин К.А. Оксидативный стресс и его роль в формировании дезадаптации и патологии // Биорадикалы и антиоксиданты. 2015. Т. 2. № 2. С. 5–18. [Martusevich A.K., Karuzin K.A. Oksidativnyj stress i ego rol' v formirovanii dezadaptacii i patologii // Bioradikaly i antioksidanty. 2015. V. 2. № 2. P. 5–18. (In Russ.)]
  15. Chen Y., Li Y., Huang L. et al. Antioxidative stress: inhibiting reactive oxygen species production as a cause of radioresistance and chemoresistance // Oxidat. Med. Cell. Longevity. 2021. V. 2021. P. 6620306. https://doi.org/10.1155/2021/6620306
  16. Kajarabille N., Latunde-Dada G.O. Programmed cell-death by ferroptosis: antioxidants as mitigators // Int. J. Mol. Sci. 2019. V. 20. № 19. P. 4968. https://doi.org/10.3390/ijms20194968
  17. Кузник Б.И., Линькова Н.С., Ивко О.М. Оксидативный стресс, старение и короткие пептиды // Успехи физиол. наук. 2021. Т. 52. № 2. С. 13–20. [Kuznik B.I., Linkova N.S., Ivko O.M. Oxidative stress, aging and short peptides // Progress in Physiological Science. 2021. V. 52. № 2. P. 13–20. (In Russ.)]. https://doi.org/10.31857/S0301179821020041
  18. Gaschlera M.M., Stockwellb B.R. Lipid peroxidation in cell death // Biochem. Biophys. Res. Commun. 2017. V. 482. № 3. P. 419–425. https://doi.org/10.1016/j.bbrc.2016.10.086
  19. Citrin D.E., Mitchell J.B. Mechanisms of normal tissue injury from irradiation // Semin. Radiat. Oncol. 2017. V. 27. № 4. P. 316–324. https://doi.org/10.1016/j.semradonc.2017.04.001
  20. Li P., Chang M. Roles of PRR-mediated signaling pathways in the regulation of oxidative stress and inflammatory diseases // Int. J. Mol. Sci. 2021. V. 19; 22. № 14. P. 7688. https://doi.org/10.3390/ijms22147688
  21. Rock K.L., Kono H. The inflammatory response to cell death // Ann. Rev. Pathol. Mechanisms Diseases. 2008. V. 3. P. 99–126. https://doi.org/10.1146/annurev.pathmechdis.3.121806. 151456
  22. Литвицкий П.Ф. Воспаление // Вопр. совр. педиатрии. 2006. Т. 6. № 3. С. 48–51 [Litvitsky P.F. Inflammation // Curr. Pediatr. 2006. V. 6. № 3. P. 48–51. (In Russ.)].
  23. Schaue D., McBride W.H. Links between innate immunity and normal tissue radiobiology // J. Radiat. Res. 2010. V. 173. № 4. P. 406–417.https://doi.org/10.1667/RR1931.1
  24. Farhood B., Ashrafizadeh M., Khodamoradi E. et al. Targeting of cellular redox metabolism for mitigation of radiation injury // Life Sci. 2020. V. 250. P. 117570. Available at: https://doi.org/ May 24, 2020.https://doi.org/10.1016/j.lfs.2020.117570.Accessed
  25. Hill R.P., Zaidi A., Mahmood J. et al. Investigations into the role of inflammation in normal tissue response to irradiation // Radiother. Oncol. 2011. V. 101. № 1. P. 73–79. https://doi.org/10.1016/j.radonc.2011.06.017
  26. Sun L., Inaba Y., Sato K. et al. Dose-dependent decrease in anti-oxidant capacity of whole blood after irradiation: A novel potential marker for biodosimetry // Sci. Rep. 2018. V. 8. P. 7425. https://doi.org/10.1038/s41598-018-25650-y
  27. Sun L., Inaba Y., Sogo Y. et al. Total body irradiation causes a chronic decrease in antioxidant levels // Sci. Rep. 2021. V. 11. № 1. P. 6716. https://doi.org/10.1038/s41598-021-86187-1
  28. Singh V.K., Beattie L.A., Seed T.M. Vitamin E: toco-pherols and tocotrienols as potential radiation countermeasures // J. Radiat. Res. 2013. V. 54. № 6. P. 973–988. https://doi.org/10.1093/jrr/rrt048
  29. Greenberger J., Kagan V., Bayir H. et al. Antioxidant approaches to management of ionizing irradiation injury // Antioxidants. 2015. V. 4. P. 82–101. https://doi.org/10.3390/antiox4010082
  30. Hofer M., Hoferová Z., Falk M. Pharmacological mo-dulation of radiation damage. Does it exist a chance for other substances than hematopoietic growth factors and cytokines? // Int. J. Mol. Sci. 2017. V. 18. № 7. P. 1385. https://doi.org/10.3390/ijms18071385
  31. Yang W.S., Stockwell B.R. Ferroptosis: death by lipid peroxidation // Trends Cell Biol. 2016. V. 26. № 3. P. 165–176. https://doi.org/10.1016/j.tcb.2015.10.014
  32. Hirschhorn T., Stockwell B.R. The development of the concept of ferroptosis // Free Radical Biol. Med. 2019. V. 133. P. 130–143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043
  33. Galluzzi L., Vitale I., Aaronson S.A. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 // Cell Death Differentiation. 2018. V. 25. № 3. P. 486–541. https://doi.org/10.1038/s41418-017-0012-4
  34. Xie Y., Hou W., Song X. et al. Ferroptosis: process and function // Cell Death Differentiation. 2016. V. 23. № 3. P. 369–379. https://doi.org/10.1038/cdd.2015.158
  35. Stockwell B.R., Friedmann Angeli J.P., Bayir H. et al. Ferroptosis: a regulated cell death nexus linking meta-bolism, redox biology, and disease // Cell. 2017. V. 171. № 2. P. 273–285. https://doi.org/10.1016/j.cell.2017.09.021
  36. Ye L.F., Chaudhary K.R., Zandkarimi F. et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers // ACS Chem. Biol. 2020. V. 15. № 2. P. 469–484. https://doi.org/10.1021/acschembio.9b00939
  37. Zhang X., Xing X., Liu H. et al. Ionizing radiation indu-ces ferroptosis in granulocyte-macrophage hematopoietic progenitor cells of murine bone marrow // Int. J. Radiat. Biol. 2020. V. 96. № 5. P. 584–595. https://doi.org/10.1080/09553002.2020.1708993
  38. Zhang X., Tian M., Li X. et al. Hematopoietic protection and mechanisms of ferrostatin-1 on hematopoietic acute radiation syndrome of mice // Int. J. Radiat. Biol. 2021. V. 97. № 4. P. 464–473. https://doi.org/10.1080/09553002.2021.1876956
  39. Thermozier S., Hou W., Zhang X. et al. Anti-ferroptosis drug enhances total-body irradiation mitigation by drugs that block apoptosis and necroptosis // J. Radiat. Res. 2020. V. 193. № 5. P. 435–450. https://doi.org/10.1667/RR15486.1
  40. Cohen-Jonathan E., Bernhard E.J., McKenna W.G. How does radiation kill cells? // Curr. Opin. Chem. Biol. 1999. V. 3. № 1. P. 77–83. https://doi.org/10.1016/S1367-5931(99)80014-3
  41. Verheij M., Bartelink H. Radiation-induced apoptosis // Cell Tissue Res. 2000, V. 301. № 1. P. 133–42. https://doi.org/10.1007/s004410000188
  42. Shinomiya N. New concepts in radiation-induced apoptosis: “premitotic apoptosis” and “postmitotic apoptosis” // J. Cell Mol. Med. 2001. V. 5. № 3. P. 240–253. https://doi.org/10.1111/j.1582-4934.2001.tb00158
  43. Elmore S. Apoptosis: A review of programmed cell death // Toxicol. Pathol. 2007. V. 35. № 4. P. 495–516. https://doi.org/10.1080/01926230701320337
  44. Черешнев В.А., Цыган В.Н., Одинак М.М. и др. Фармакологическое регулирование программированной гибели клеток / Под ред. В.А. Черешнева. СПб.: Наука, 2011. 255 с. [Chereshnev V.A., Tsygan V.N., Odinak M.M. et al. Pharmacological regulation of programmed cell death / Ed. V.A. Chereshnev. St. Petersburg: Nauka, 2011. 255 p. (In Russ.)]
  45. Cao X., Wen P., Fu Y. et al. Radiation induces apoptosis primarily through the intrinsic pathway in mammalian cells // Cell Signal. 2019. V. 62. P. 109337. https://doi.org/10.1016/j.cellsig.2019.06.002
  46. Lee K.-H., Kang T.-B. The molecular links between cell death and inflammasome // Cells. 2019. V. 8. № 9. P. 1057. https://doi.org/10.3390/cells8091057
  47. D’Arcy M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy // Cell Biol. Int. 2019. V. 43. № 6. P. 582–592. https://doi.org/10.1002/cbin.11137
  48. Kroemer G., Galluzzi L., Vandenabeele P. et al. Classification of cell death recommendations of the Nomenclature Committee on Cell Death 2009 // Cell Death Differentiat. 2009. V. 16. № 1. P. 3–11. https://doi.org/10.1038/cdd.2008.150
  49. Gudipaty S.A., Conner Ch.M., Rosenblatt J. et al. Unconventional ways to live and die: cell death and survi-val in development, homeostasis, and disease // Ann. Rev. Cell Develop. Biol. 2018. V. 34. P. 311–332. https://doi.org/10.1146/annurev-cellbio-100616-060748
  50. Lorimore S.A., Coates Ph.J., Scobie G.E. et al. Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? // Oncogen. 2001. V. 20. P. 7085–7095. https://doi.org/10.1038/sj.onc.1204903
  51. Taylor R.C., Cullen S.P., Martin S.J. Apoptosis: controlled demolition at the cellular level // Nat. Rev. Mol. Cell Biol. 2008. V. 9. № 3. P. 231–241. https://doi.org/10.1038/nrm2312
  52. Silva M.T., do Vale A., dos Santos N.M.N. Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications // Apoptosis. 2008. V. 13. № 4. P. 463–482. https://doi.org/10.1007/s10495-008-0187-8
  53. Bergsbaken T., Fink S.L., Cookson B.T. Pyroptosis: host cell death and inflammation // Nat. Rev. Microbiol. 2009. V. 7. № 2. P. 99–109. https://doi.org/10.1038/nrmicro2070
  54. Lu F., Lan Zh., Xin Zh. et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases // J. Cell Physiol. 2020. V. 235. № 4. P. 3207–3221. https://doi.org/10.1002/jcp.29268
  55. Walle L.V., Lamkanfi M. Pyroptosis // Curr. Biol. 2016. V. 26. № 13. P. R568–R572. https://doi.org/10.1016/j.cub.2016.02.019
  56. Yu P., Zhang X., Liu N. et al. Pyroptosis: mechanisms and diseases // Signal Transduct. Target Ther. 2021. V. 6. № 1. P. 128. https://doi.org/10.1038/s41392-021-00507-5
  57. He W.-T., Wan H., Hu L. et al. Gasdermin D is an exe-cutor of pyroptosis and required for interleukin-1β secretion // Cell Res. 2015. V. 25. № 12. P. 1285–1298. https://doi.org/10.1038/cr.2015.139
  58. Stoecklein V.M., Osuka A., Ishikawa Sh. et al. Radiation exposure induces inflammasome pathway activation in immune cells // J. Immunol. 2015. V. 194. № 3. P. 1178–1189. https://doi.org/10.4049/jimmunol.1303051
  59. Liu Y.-G., Chen J.-K., Zhang Z.-T. et al. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages // Cell Death Disease. 2017. V. 8. № 2. P. e2579. https://doi.org/10.1038/cddis.2016.460
  60. Liao H., Wang H., Rong X. et al. Mesenchymal stem cells attenuate radiation-induced brain injury by inhi-biting microglia pyroptosis // Biomed. Res. Inte. 2017. P. 1948985. https://doi.org/10.1155/2017/1948985
  61. Гемпельман Л., Лиско Г., Гофман Д. Острый лучевой синдром: изучение 9 случаев и обзор проблемы / Под ред. А. Бурназяна. М.: Изд-во Иностр. лит-ры, 1954. 290 с. [Gempel’man L., Lisko G., Gofman D. Ostryj luchevoj sindrom: izuchenie 9 sluchaev I obzor problem / Pod red. A. Burnazjana. M.: Izd-vo inostrannoj literatury, 1954. 290 p. (In Russ.)]
  62. McBride W.H., Chiang Chi.-Sh., Olson J.L. et al. A Sense of Danger From Radiation // Radiat. Res. 2004. V. 162. № 1. P. 1–19. https://doi.org/10.1667/rr3196
  63. Богданова И.М. Иммунологические механизмы сепсиса и новые подходы к его терапии // Клин. и эксперим. морфология. 2014. Т. 3. № 11. С. 52–58. [Bogdanova I.M. Immunological mechanisms of sepsis and new approaches to its treatment // Clinical and experimental morphology. 2014. V. 3. № 11. P. 52–58. (In Russ.)]
  64. Schaefer L. Complexity of Danger: The Diverse Nature of Damage-associated Molecular Patterns // J. Biol. Chem. 2014. V. 289. № 51. P. 35237–35245. https://doi.org/10.1074/jbc.R114.619304
  65. Ratikan J.A., Micewicz E.D., Xie M.W. et al. Radiation takes its Toll // Cancer Lett. 2015. V. 368. № 2. P. 238–245. https://doi.org/10.1016/j.canlet.2015.03.031
  66. Черешнев В.А., Гусев Е.Ю. Иммунологические и патофизиологические механизмы системного воспаления // Мед. иммунология. 2012. Т. 14. № 1–2. С. 9–20. [Chereshnev V.A., Gusev E.Ju. Immunolo-gicheskie i patofiziologicheskie mehanizmy sistemnogo vospalenija // Medicinskaja immunologija. 2012. V. 14. № 1–2. P. 9–20. (In Russ.)]
  67. Shi Y., Evans J., Rock K. Molecular identification of a danger signal that alerts the immune system to dying cells // Nature. 2003. V. 425. P. 516–521. https://doi.org/10.1038/nature01991
  68. Netea M.G., Balkwill F., Honchol M. et al. A guiding map for inflammation // Nat. Immunol. 2017. V. 18. № 8. P. 826–831.https://doi.org/10.1038/ni.3790
  69. Тухватулин А.И., Логунов Д.Ю., Щербинин Д.Н. и др. Toll‑подобные рецепторы и их адапторные молекулы. Обзор // Биохимия. 2010. Т. 75. № 9. С. 1224–1243. [Tukhvatulin A.I., Logunov D.Y., Shcherbinin D.N. et al. Toll-like receptors and their adapter molecules // Biochemistry (Moscow). 2010. V. 75. № 9. P. 1098–1114. (In Russ.)]
  70. Piccinini A.M., Midwood K.S. DAMPening inflammation by modulating tlr signaling // Mediators Inflamm. 2010. P. 672395. https://doi.org/10.1155/2010/672395
  71. Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger // J. Leukocyte Biol. 2007. V. 81. № 1. P. 1–5. https://doi.org/10.1189/jlb.0306164
  72. Бакунина Л.С., Литвиненко И.В., Накатис Я.А. и др. Сепсис: пожар и бунт на тонущем в шторм корабле: монография. В 3 ч. Ч. I. Триггеры воспаления. Рецепция триггеров воспаления и сигнальная трансдукция / Под ред. Н.Н. Плужникова, С.В. Чепура, О.Г. Хурцилава. СПб.: Изд-во СЗГМУ им. И.И. Мечникова, 2018. 232 с. [Bakunina L.S., Litvinenko I.V., Nakatis Y.A. et al. Sepsis: pozhar i bunt na tonuschem v shtorm korable: Recepciya trigerov vos-palenia i signal`naya transdukciya / Pod redakciej N.N. Pluzhnikova, S.V. Chepura, O.G. Xurcilava. Saint Peterburg: Izdatel`stvo SZGMU imeni I.I. Mechnikova, 2018. 232 p. (In Russ.)]
  73. Takeuchi O., Akira Sh. Pattern Recognition Receptors and Inflammation // Cell. 2010. V. 140. № 6. P. 805–820. https://doi.org/10.1016/j.cell.2010.01.022
  74. Ковальчук Л.В., Хорева М.В., Никонова А.С. Распознающие рецепторы врожденного иммунитета (NLR, RLRи CLR) // Журн. микробиологии, эпидемиологии и иммунобиологии. 2011. № 1. С. 93–100. [Koval’chuk L.V., Khoreva M.V., Nikonova A.S. Recognition receptors of innate immunity (NLR, RLR, AND CLR) // J. Microbiol. Epidemiol. Immunobiol. 2011. № 1. 93–100. (In Russ.)]
  75. Успенская Ю.А., Комлева Ю.К., Пожиленкова Е.А. и др. Лиганды RAGE-белков: роль в межклеточной коммуникации и патогенезе воспаления // Вестн. РАМН. 2015. Т. 70. № 6. С. 694–703. [Uspenskaya Yu.A., Komleva Yu.K., Pozhilenkova E.A. et al. Ligands of RAGE-Proteins: Role in Intercellular Communication and Pathogenesis of Inflammation // Vestnik Rossiiskoi Akademii Meditsinskikh Nauk (Annals of the Russian Academy of Medical Sciences). 2015. V. 70. № 6. P. 694–703 (In Russ.)]. https://doi.org/10.15690/vramn566
  76. Schaue D., Kachikwu E.L., McBride W.H. Cytokines in Radiobiological Responses: A Review // Radiat. Res. 2012. V. 178. № 6: 505–523. https://doi.org/10.1667/RR3031.1
  77. Janssens S., Tschopp J. Signals from within: the DNA-damage-induced NF-kappaB response // Cell Death Different. 2006. V. 13. № 5. P. 773–84. https://doi.org/10.1038/sj.cdd.4401843
  78. Janssens S., Tinel A., Lippens S. et al. PIDD mediates NF-κB activation in response to DNA damage // Cell. 2005. V. 123. № 6. P. 1079–1092.
  79. Lin Y., Bai L, Chen W. et al. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy // Exp. Opin. Therap. Targets. 2010. V. 14. № 1. P. 45–55. https://doi.org/10.1517/14728220903431069
  80. Zhang Q., Lenardo M.J., Baltimore D. 30 Years of NF-κB: A blossoming of relevance to human pathobiology // Cell. 2017. V. 168. № 1–2. P. 37–57. https://doi.org/10.1016/j.cell.2016.12.012
  81. Di Maggio F.M., Minafra L., Forte G.I. et al. Portrait of inflammatory response to ionizing radiation treatment // J. Inflamm. (Lond). 2015. V. 12. P. 14. https://doi.org/10.1186/s12950-015-0058-3
  82. Pulsipher A., Savage J.R., Kennedy T.P. et al. GM-1111 reduces radiation-induced oral mucositis in mice by targeting pattern recognition receptor-mediated inflammatory signaling // PLoS One. 2021. V. 16. № 3. P. e0249343. https://doi.org/10.1371/journal.pone.0249343
  83. Dent P., Yacoub A., Fisher P.B. et al. MAPK pathways in radiation responses // Oncogene. 2003. V. 22. № 37. P. 5885–96. https://doi.org/10.1038/sj.onc.1206701
  84. Munshi A., Ramesh R. Mitogen-activated protein kina-ses and their role in radiation response // Genes Cancer. 2013. V. 4. № 9–10. P. 401–408. https://doi.org/10.1177/1947601913485414
  85. Meng Q., Karamfilova Zaharieva E., Sasatani M. et al. Possible relationship between mitochondrial changes and oxidative stress under low dose-rate irradiation // Redox Rep. 2021. V. 26. № 1. P. 160–169. https://doi.org/10.1080/13510002.2021.1971363
  86. Евдокимовский Э.В., Губина Н.Е., Ушакова Т.Е. и др. Изменение соотношения мтДНК/яДНК в сыворотке крови после рентгеновского облучения мышей в различных дозах // Радиац. биология. Радиоэкология. 2012. Т. 52. № 6. С. 565–571. [Evdokimovsky E.V., Gubina N.E., Ushakova T.E. et al. Changes of Mitochondrial DNA/Nuclear DNA Ratio in the Blood Serum Following X-Ray Irradiation of Mice at Various Doses // Radiation biology. Radioecology. 2012. V. 52. № 6. P. 565–571. (InRuss.)]
  87. Евдокимовский Э.В., Губина Н.Е., Абдуллаев С.А., и др. Изменения в уровне метилирования ДНК, а также экспрессии генов в митохондриях разных отделов головного мозга крыс, облученных протонами 150 МэВ // Мат. междунар. конф. “Современные вопросы радиационной генетики”. Дубна, 2019. С. 53–54. [Evdokimovskij Je.V., Gubina N.E., Abdullaev S.A. et al. Izmenenija v urovne metilirovanija DNK, a takzhej ekspressii genov v mitohondrijah raznyh otdelov golovnogo mozga krys, obluchennyh protonami 150 Mjev. Sovremennye voprosy radiacionnoj genetiki // Materialy rossijskoj konferencii s mezhdu-narodnym uchastiem. Dubna, 2019. P. 53–54. (In Russ.)]
  88. Yang L., Hu M., Lu Y. et al. Inflammasomes and the maintenance of hematopoietic homeostasis: new perspectives and opportunities // Molecules. 2021. V. 26. № 2. P. 309. https://doi.org/10.3390/molecules26020309
  89. Wei J., Wang H., Wang H. et al. The role of NLRP3 inflammasome activation in radiation damage // Biomed. Pharmacotherap. 2019. V. 118. P. 109217. https://doi.org/10.1016/j.biopha.2019.109217
  90. Huang Sh., Che J., Chu Q. et al. The Role of NLRP3 inflammasome in radiation-induced cardiovascular injury // Front. Cell Develop. Biol. 2020. V. 8. P. 140. https://doi.org/10.3389/fcell.2020.00140
  91. Колмычкова К.И., Желанкин А.В., Карагодин В.П. и др. Митохондрии и воспаление // Патол. физиология и эксперим. терапия. 2016. Т. 60. № 4. С. 114–121 [Kolmychkova K.I., Zhelankin A.V., Karagodin V.P. et al. Mitochondria and inflammation // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2016. V. 60. № 4. P. 114–121. (In Russ.)]
  92. Zhang Q., Raoof M., Chen Y. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury // Nature. 2010. V. 464. № 7285. P. 104–107. https://doi.org/10.1038/nature08780
  93. Патрушев М.В., Патрушева В.Е., Касымов В.А. и др. Элиминация мтДНК из митохондрий и активация ее репликации в клетках тканей облученных мышей // Цитология. 2006. Т. 48. № 8. С. 684–691. [Patrushev M.V., Patrusheva V.E., Kasymov V.А. et al. Release of mtDNA from mitochondria and activation of its replication in tissues of irradiated mice // Tsitologiya. 2006. V. 48. № 8. P. 684–691. (In Russ.)]
  94. Picca A., Calvani R., Coelho-Junior H.J. et al. Cell death and inflammation: the role of mitochondria in health and disease // Cells. 2021. V. 10. № 3. P. 537. https://doi.org/10.3390/cells10030537
  95. De Gaetano A., Solodka K., Zanini G. et al. Molecular mechanisms of mtDNA-mediated inflammation // Cells. 2021. V. 10. № 11. P. 2898. https://doi.org/10.3390/cells10112898
  96. Kong C., Song W., Fu T. Systemic inflammatory response syndrome is triggered by mitochondrial damage // Mol. Med. Rep. 2022. V. 25. № 4. P. 147. https://doi.org/10.3892/mmr.2022.12663
  97. Riley J.S., Tait S.W.G. Mitochondrial DNA in inflammation and immunity // EMBO Rep. 2020. V. 21. № 4. P. e49799. https://doi.org/10.15252/embr.201949799
  98. Guo H., Callaway J.B., Ting J. P.-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics // Nat. Med. 2015. V. 21. № 7. P. 677–687.
  99. Sharma D., Kanneganti Th.-D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation // J. Cell Biol. 2016. V. 213. № 6. P. 617–629. https://doi.org/10.1083/jcb.201602089
  100. He Y., Hara H., Núñez G. Mechanism and regulation of NLRP3 inflammasome activation // Trends Biochem. Sci. 2016. V. 41. № 12. P. 1012–1021. https://doi.org/10.1016/j.tibs.2016.09.002
  101. Vanaja S., Rathinam V.K., Fitzgerald K.A. Mechanisms of inflammasome activation: recent advances and no-vel insights // Trends Cell Biol. 2015. V. 25. № 5. P. 308–315. https://doi.org/10.1016/j.tcb.2014.12.009
  102. Man S.M., Kanneganti Th.-D. Regulation of inflammasome activation // Immunol. Rev. 2015. V. 265. № 1. P. 6–21. https://doi.org/10.1111/imr.12296
  103. Гариб Ф.Ю., Ризопулу А.П., Кучмий А.А., и др. Инактивация инфламмасом патогенами регулирует воспаление (обзор) // Биохимия. 2016. Т. 81. № 11. С. 1578–1592. [Garib F.Yu., Rizopulu A.P., Kuchmiy A.A. et al. Inactivation of inflammasomes by pathogens regulates inflammation // Biochemistry (Moscow). 2016. V. 81. № 11. P. 1326–1339. (In Russ.)]
  104. Гариб Ф.Ю., Ризопулу А.П. Инфламмасомы и воспаление // Рос. иммунол. журн. 2017. Т. 11 (20). № 4. С. 620–626. [Garib F.Yu., Rizopulu A.P. Inflammasomes and inflammation // Russian Journal of Immunology (Rossiyskiy Immunologicheskiy Zhurnal). 2017. V. 11 (20). № 4. P. 620–626. (In Russ.)]
  105. Богданова И.М. Инфламмасомы: внутриклеточные регуляторы противоинфекционного и воспалительного ответа в системе врожденного иммунитета // Клин. и эксперим. морфология. 2016. Т. 1. № 17. С. 63–69. [Bogdanova I.M. Inflammasomes: intracellular regulators of anti-infectious and inflammatory responses in the innate immune system // Clin. Exp. Morphology. 2016. V. 1. № 17. P. 63–69. (In Russ.)]
  106. Кувачева Н.В., Моргун А.В., Хилажева Е.Д. и др. Формирование инфламмасом: новые механизмы регуляции межклеточных взаимодействий и секреторной активности клеток // Сиб. мед. обозрение. 2013. № 5 (83). С. 3–10. [Kuvacheva N.V., Morgun A.V., Hilazheva E.D. Inflammasomes forming: new mechanisms of intercellular interactions regulation and secretory activity of the cells // Siberian Me-dical Review. 2013. № 5 (83). P. 3–10. (In Russ.)]
  107. Ghaemi-Oskouie F., Shi Y. The role of uric acid as an endogenous danger signal in immunity and inflammation // Curr. Rheumatol. Rep. 2011. V. 3. № 2. P. 160–166. https://doi.org/10.1007/s11926-011-0162-1
  108. Gao J., Peng Sh., Shan X. et al. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis // Cell Death Diseases. 2019. V. 10. № 12. P. 957. https://doi.org/10.1038/s41419-019-2195-8
  109. Xiao J., Wang Ch., Yao J.-Ch. et al. Radiation causes tissue damage by dysregulating inflammasome-gasdermin D signaling in both host and transplanted cells // PLoS Biol. 2020. V. 18. № 8. P. e3000807. https://doi.org/10.1371/journal.pbio.3000807
  110. Sohn S.-H., Lee J.M., Park S. et al. The inflammasome accelerates radiation-induced lung inflammation and fibrosis in mice // Environ. Toxicol. Pharmacol. 2015. V. 39. № 2. P. 917–926. https://doi.org/10.1016/j.etap.2015.02.019
  111. Цыган В.Н., Бубнов В.А., Цыган Н.В. и др. Врожденный иммунитет и активация атерогенеза // Воен.-мед. журн. 2016. Т. 337. № 3. С. 47–54. [Tsygan V.N., Bubnov V.A., Tsygan N.V. et al. The innate immunity and activation of the atherogenesis // Voenno-med. zhurn. (J. Mil. Med). 2016. V. 337. № 3. P. 47–54. (In Russ.)]
  112. Zhao W., Robbins M.E.C. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications // Curr. Med. Chem. 2009. V. 16. № 2. P. 130–143. https://doi.org/10.2174/092986709787002790

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (271KB)

Copyright (c) 2023 Д.Б. Пономарев, А.В. Степанов, А.Б. Селезнёв, Е.В. Ивченко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies