High Thermosensitivity of MDA-MB-231 Cells as a Prerequisite for Thermoradiosensitization of Triple-negative Breast Cancer in Clinical Practice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is dedicated to the analysis of thermal sensitivity and efficiency of thermosensitization to γ-radiation of three cell lines of breast cancer of different molecular subtypes. It has been established that the cells of the studied lines differ in the sensitivity to hyperthermia and, as a result, in the effectiveness of thermoradiosensitization, which raises the question of finding criteria for assessing the rationale of using hyperthermia in each specific case. It has been shown that the level of heat-responsive expression of HSP70 gene and also the level of cell genomic instability can serve as such criteria. It was found that the efficiency of thermoradiosensitization is significantly higher in MDA-MB-231 cells compared to the cells of other studied lines. The data obtained suggest that the use of hyperthermia as a radiotherapy-sensitizing co-treatment may be particularly promising toward triple negative breast cancer.

About the authors

A. O. Yakimova

A. Tsyb MRRC – a branch of the National Medical Research Centre of Radiology of the Ministry of Health of Russia

Author for correspondence.
Email: anna.prosovskaya@gmail.com
Russia, Obninsk

A. E. Kabakov

A. Tsyb MRRC – a branch of the National Medical Research Centre of Radiology of the Ministry of Health of Russia

Email: anna.prosovskaya@gmail.com
Russia, Obninsk

References

  1. Каприн А.Д. Состояние онкологической помощи населению России в 2017 г. / Под ред.: А.Д. Каприн, В.В. Старинский, Г.В. Петрова. М., 2018. С. 18. [Kaprin A.D. Sostojanie onkologicheskoj pomoshhi naseleniju Rossii v 2017 g. / Eds A.D. Kaprin, V.V. Starinskij, G.V. Petrova. M., 2018. S. 18 (In Russ.)].
  2. Кулигина Е.Ш. Эпидемиологические и молекулярные аспекты рака молочной железы // Практ. онкология. 2010. Т. 11. № 4. С. 203–216. [Kuligina E.Sh. Jepidemiologicheskie i molekuljarnye aspekty raka molochnoj zhelezy // Practical Oncology. 2010. Т. 11. № 4. S. 203–216 (In Russ.)].
  3. Łukasiewicz S., Czeczelewski M., Forma A. et al. Breast Cancer–Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies – An Updated Review // Cancers. 2021. V. 13. P. 4287. https://doi.org/10.3390/cancers13174287
  4. Деньгина Н.В., Мозерова Е.Я. Стереотаксическая лучевая терапия и локальная гипертермия в лечении опухолей различных локализаций // Практ. онкология. 2015. Т. 16. № 4. С. 162–173. [Dengina N.V., Mozerova E.Ya. Stereotactic body radiotherapy and local hyperthermia in the treatment of various malignant tumors // Practical Oncology. 2015. V. 16. № 4. P. 162–173 (In Russ.)].
  5. Datta N.R., Jain B.M., Mathi Z. et al. Hyperthermia: A Potential Game-Changer in the Management of Cancers in Low-Middle-Income Group Countries // Cancers. 2022. V. 14. P. 315. https://doi.org/10.3390/cancers14020315
  6. Rao W., Deng Z.-Sh., Liu J. A Review of Hyperthermia Combined With Radiotherapy/Chemotherapy on Malignant Tumors // Critic. Rev. Biomed. Engineer. 2010. V. 38. №1. P. 101–116. https://doi.org/10.1615/critrevbiomedeng.v38.i1.80
  7. Datta N.R., Ordonez S.G., Gaipl U.S. et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future // Cancer Treat. Rev. 2015. V. 41. P. 742–753. https://doi.org/10.1016/j.ctrv.2015.05.009
  8. van den Tempel N., Horsman M.R., Kanaar R. Impro-ving efficacy of hyperthermia in oncology by exploiting biological mechanisms // Int. J. Hyperthermia. 2016. V. 32. № 4. P. 446–454. https://doi.org/10.3109/02656736.2016.1157216
  9. Кабаков А.Е., Кудрявцев В.А., Хохлова А.В. и др. Апоптоз в опухолевых клетках, подвергнутых сочетанному действию гипертермии и облучения: исследование молекулярных механизмов и мишеней // Радиация и риск. 2018. Т. 27. № 2. С. 62–75. [Kabakov A.E., Kudryavtsev V.A., Khokhlova A.V. et al. Apoptosis in tumor cells subjected to the combined action of hyperthermia and irradiation: a study of the molecular mechanisms and targets // Radiation and Risk. 2018. V. 27. № 2. P. 62–75 (In Russ.)]. https://doi.org/10.21870/0131-3878-2018-27-2-62-75
  10. Chatterjee S. and Burns T.F. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach // Int. J. Mol. Sci. 2017. V. 18. P. 1978. https://doi.org/10.3390/ijms18091978
  11. Хохлова А.В., Якимова А.О., Мосина В.А. и др. Гипертермия как способ повышения радиочувствительности опухолевых клеток, невосприимчивых к фармакологическим радиосенсибилизаторам // Радиац. биология. Радиоэкология. 2020. Т. 60. № 5. С. 516–523. [Khokhlova A.V., Yakimova A.O., Mosina V.A. et al. Hyperthermia as a Method of Radiosensitization of Tumor Cells Unsusceptible to Pharmacological Radiosensitizers // Radiation Biology. Radioecology. 2020. V. 60. № 5. P. 516–523. (In Russ.)]. https://doi.org/10.31857/S0869803120050057
  12. Rossi A., Ciafrè S., Balsamo M. et al. Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer // Cancer Res. 2006. V. 66. P. 7678–7685. https://doi.org/10.1158/0008-5472.CAN-05-4282
  13. Кудрявцев В.А., Макарова Ю.М., Кабаков А.Е. Термосенсибилизация опухолевых клеток ингибиторами активности и экспрессии шаперонов // Биомед. химия. 2012. Т. 58. № 6. С. 662–672. [Kudryavtsev V.A., Makarova Y.M., Kabakov A.E. Thermosensitization of tumor cells with inhibitors of chaperone activity and expression // Biomedical Chemistry. 2012. V. 58. № 6. P. 662–672. (In Russ.)]. https://doi.org/10.18097/pbmc20125806662
  14. Kabakov A.E., Gabai V.L. Cell death and survival assays // Meth. Mol. Biol. 2018. V. 1709. P. 107–127. https://doi.org/10.1007/978-1-4939-7477-1_9
  15. Schmittgen T.D. and Livak K.J. Analyzing real-time PCR data by the comparative C(T) method // Nature Prot.2008. V. 3. № 6. P. 1101–1108. https://doi.org/10.1038/nprot.2008.73
  16. RefFinder. Доступно по: https://heartcure.com.au/reffinder (ссылка активна на 31.01.2022).
  17. Kabakov A.E., Gabai V.L. HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy // Cells. 2021. V. 10. № 12. P. 3446. https://doi.org/10.3390/cells10123446
  18. Takaki T., Montagner M., Serres M.P. et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability // Nature Communicat. 2017. V. 8. P. 16013. https://doi.org/10.1038/ncomms16013
  19. Jevtić P., Edens L.J., Vuković L.D., and Levy D.L. Sizing and shaping the nucleus: mechanisms and significance // Curr. Opin. Cell Biol. 2014. June. V. 28. P. 16–27. https://doi.org/10.1016/j.ceb.2014.01.003
  20. Stephens A.D., Banigan E.J., Marko J.F. Chromatin’s physical properties shape the nucleus and its functions // Curr. Opin. Cell Biol. 2019. V. 58. P. 76–84. https://doi.org/10.1016/j.ceb.2019.02.006
  21. Lee S.-Y., Fiorentini G., Szasz A.M. et al. Quo Vadis Oncological Hyperthermia // Front. Oncol. 2020. V. 10. P. 1690. https://doi.org/10.3389/fonc.2020.01690
  22. Курпешев О.K., van der Zee J. Локорегионарная гипертермия злокачественных опухолей: Методики, термометрия, аппаратура // Мед. радиология и радиац. безопасность. 2017. Т. 62. № 5. С. 52–63. [Kurpeshev O.K., van der Zee J. Locoregional Hyperthermia of Malignant Tumors: Methods, Thermometry, Machines // Medical Radiology and Radiation Safety. 2017. V. 62. № 5. P. 52–63 (In Russ.)].
  23. Kabakov A.E., Yakimova A.O. Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: approaches to targeting and radiosensitizing // Cancers. 2021. V. 13. № 5. P. 1–52. https://doi.org/10.3390/cancers13051102
  24. Кудрявцев В.А., Хохлова А.В., Селиванова Е.И. и др. Усиленная радиосенсибилизация опухолевых клеток с помощью комбинации ингибиторов активности и экспрессии шаперонов // Радиац. биология. Радиоэкология. 2018. Т. 58. № 1. С. 26–34. [Kud-ryavtsev V.A., Khokhlova A.V., Selivanova E.I. et al. Enhanced radiosensitization of tumor cells by means of combination of inhibitors of chaperone activity and chaperone expression // Radiation Biology. Radioeco-logy. 2018. V. l. 58. № 1. Р. 26–34. (In Russ.)]. https://doi.org/10.7868/S0869803118010034

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (356KB)
3.

Download (275KB)
4.

Download (256KB)
5.

Download (826KB)

Copyright (c) 2023 А.О. Якимова, А.Е. Кабаков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies