Association Between Single Nucleotide Polymorphisms of Apoptosis and Cell Cycle Control Genes and the Risk of Cancer Development in Chronically Exposed Persons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The objective of the paper was to study the association between single nucleotide polymorphisms of genes involved in the cell cycle control (ATM rs664677, MDM2 rs2279744, CDKN1A rs1801270) and apoptosis (BCL-2 rs2279115, BAX rs4645878, TNFα rs361525) and the risk of solid cancer development in persons of different ethnicity exposed to chronic radiation. The study included 915 residents of the Techa riverside settlements belonging to two ethnic groups (Slavs and Turks) who were affected by chronic low dose rate exposure in the low to and medium dose range. 310 persons out of them had solid cancers. Genotyping of polymorphic regions of genes regulating cell cycle and apoptosis was performed by real-time PCR method. The study showed that the rs2279744*C allele of the MDM2 gene was associated with an increased risk of cancer development (OR = 2.29; 95% CI 1.23–4.28; p = 0.007), while the rs1801270*A allele of the CDKN1A gene showed a protective effect against cancer development (OR = 0.55; 95% CI 0.35–0.85; p = 0.01) in exposed individuals of the Turkic ethnic group. The combined effect of the identified polymorphisms and soft tissue exposure dose statistically significantly modifies the risk of cancer development in chronically exposed persons of the Turkic ethnic group, with the greatest contribution being made by the carriage of the rs2279744*C allele of the MDM2 gene.

About the authors

E. A. Blinova

Urals Research Center for Radiation Medicine; Chelyabinsk State University

Author for correspondence.
Email: blinova@urcrm.ru
Russia, Chelyabinsk; Russia, Chelyabinsk

M. A. Yanishevskaya

Urals Research Center for Radiation Medicine

Email: blinova@urcrm.ru
Russia, Chelyabinsk

A. V. Korechenkova

Urals Research Center for Radiation Medicine

Email: blinova@urcrm.ru
Russia, Chelyabinsk

A.V. Akleyev

Urals Research Center for Radiation Medicine; Chelyabinsk State University

Email: blinova@urcrm.ru
Russia, Chelyabinsk; Russia, Chelyabinsk

References

  1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts. IARC Monogr. Eval. Carcinog. Risks Hum. 2012. 100 c.
  2. Davis F.G., Yu K.L., Preston D. et al. Solid Cancer Incidence in the Techa River Incidence Cohort: 1956–2007 // Radiat. Res. 2015. V. 184. № 1. P. 56–65. https://doi.org/10.1667/RR14023
  3. Krestinina L.Y., Kharyuzov Y.E., Epiphanova S.B. et al. Cancer Incidence after In Utero Exposure to Ionizing Radiation in Techa River Residents // Radiat. Res. 2017. V. 188. № 3. P. 314–324. https://doi.org/10.1667/RR14695.1
  4. Schonfeld S.J., Krestinina L.Y., Epifanova S., Degteva M.O., Akleyev A.V., Preston D.L. Solid cancer mortality in the Techa river cohort (1950–2007) // Radiat Res. 2013. V. 179. № 2. P. 183–189. https://doi.org/10.1667/RR2932.1
  5. Bouffler S.D. Evidence for variation in human radiosensitivity and its potential impact on radiological protection // Ann. ICRP. 2016. V. 45. № 1. P. 280–289. https://doi.org/10.1177/0146645315623158
  6. Barnett G.C., West C.M., Coles C.E. et al. Standardized total average toxicity score: a scale- and grade-independent measure of late radiotherapy toxicity to facilitate pooling from different studies // Int. J. Radiat. Oncol. Biol. Phys. 2012. V. 82. № 3. P. 1065–1074. https://doi.org/10.1016/j.ijrobp.2011.03.015
  7. HPA. Human Radiosensitivity. Report of the Independent Advisory Group on Ionising Radiation. Doc. HPA, RCE–21. London: Health Protection Agency, 2013.
  8. Best T., Li D., Skol A.D. et al. Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma // Nat. Med. 2011. V. 17. № 8. P. 941–943. https://doi.org/10.1038/nm.2407
  9. Papadakis E., Soulitzis N., Spandidos D. Association of p53 codon 72 polymorphism with advanced lung cancer: the Arg allele is preferentially retained in tumours arising in Arg/Pro germline heterozygotes // Br. J. Cancer. 2002. V. 87. P. 1013–1018. https://doi.org/10.1038/sj.bjc.6600595
  10. Chen R., Liu S., Ye H. et al. Association of p53 rs1042522, MDM2 rs2279744 and p21 rs1801270 polymorphisms with retinoblastoma risk and invasion in a Chinese population // Sci. Rep. 2015. V. 5. P. 13300. https://doi.org/10.1038/srep13300
  11. Gao J., Kang A.J., Lin S. et al. Association between MDM2 rs 2279744 polymorphism and breast cancer susceptibility: a meta-analysis based on 9,788 cases and 11,195 controls // Ther. Clin. Risk. Manag. 2014. V. 10. P. 269–277. https://doi.org/10.2147/TCRM.S60680
  12. Yao Z., Yang B., Liu Z. et al. Genetic polymorphisms of Bcl-2 promoter in cancer susceptibility and prognosis: a meta-analysis // Oncotarget. 2017. V. 8. № 15. P. 25270–25278.
  13. Xu T., Kong Z., Zhao H. Relationship Between Tumor Necrosis Factor-α rs361525 Polymorphism and Gastric Cancer Risk: A Meta-Analysis // Front. Physiol. 2018. V. 9. P. 469. https://doi.org/10.3389/fphys.2018.00469
  14. Дегтева М.О., Напье Б.А., Толстых Е.И. и др. Распределение индивидуальных доз в когорте людей, облученных в результате радиоактивного загрязнения реки Течи // Мед. радиология и радиац. безопасность. 2019. Т. 64. № 3. С. 46–53. [Degteva M.O., Napier B.A., Tolstykh E.I. et al. Individual Dose Distribution in Cohort of People Exposed as a Result of Radioactive Contamination of the Techa River // Medical Radiology and Radiation Safety. 2019. V. 64. № 3. P. 46–53. (In Russ.)]
  15. Старцев Н.В., Шишкина Е.А., Блинова Е.А., Аклеев А.В. Cправочно-информационный комплекс REGISTR Уральского научно-практического центра радиационной медицины ФМБА России // Мед. радиология и радиац. безопасность. 2022. Т. 67. № 1. С. 46–53. [Starcev N.V., Shishkina E.A., Blinova E.A., Akleev A.V. Cpravochno-informacionnyj kompleks REGISTR Ural’skogo nauchno-prakticheskogo centra radiacionnoj mediciny FMBA Rossii // Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2022. V. 67. № 1. P. 46–53. (In Russ.)]
  16. Hahn L.W., Ritchie M.D., Moore J.H. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions // Bioinformatics. 2003. V. 19. № 3. P. 376–382. https://doi.org/10.1093/bioinformatics/btf869
  17. Bond G.L., Hu W., Bond E.E. et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans // Cell. 2004. V. 119. № 5. P. 591–602. https://doi.org/10.1016/j.cell.2004.11.022
  18. Bougeard G., Baert-Desurmont S., Tournier I. et al. Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome // J. Med. Genet. 2006. V. 43. № 6. P. 531–533. https://doi.org/10.1136/jmg.2005.037952
  19. Bond G.L., Hirshfield K.M., Kirchhoff T. et al. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner // Cancer Res. 2006. V. 66. № 10. P. 5104–5110. https://doi.org/10.1158/0008-5472.CAN-06-0180
  20. Bond G.L., Menin C., Bertorelle R. et al. MDM2 SNP309 accelerates colorectal tumour formation in wo-men // J. Med. Genet. 2006. V. 43. № 12. P. 950–952. https://doi.org/10.1136/jmg.2006.043539
  21. Ma Y., Bian J., Cao H. MDM2 SNP309 rs2279744 polymorphism and gastric cancer risk: a meta-analysis // PLoS One. 2013. V. 8. № 2. P. e56918. https://doi.org/10.1371/journal.pone.0056918
  22. Ma H.B., Huang T., Han F., Chen W.Y. Association between MDM2 promoter SNP309 T/G polymorphism and liver cancer risk – a meta-analysis // Asian Pac. J. Cancer Prev. 2012. V. 13. № 6. P. 2841–2846. https://doi.org/10.7314/apjcp.2012.13.6.2841
  23. He W., Long J., Xian L., et al. MDM2 SNP309 polymorphism is associated with lung cancer risk in women: A meta-analysis using METAGEN // Exp. Ther. Med. 2012. V. 4. № 4. P. 569–-576. https://doi.org/10.3892/etm.2012.640
  24. Игнатьева Е.В., Матросова Е.А. Геномная изменчивость в регуляторных районах генов, ассоциированная с заболеваниями человека: механизмы влияния на транскрипцию генов и полногеномные информационные ресурсы, обеспечивающие исследование этих механизмов // Вавиловский журнал генетики и селекции. 2021. 25. № 1. С. 18–29. [Ignatieva E.V., Matrosova E.A. Disease-associated genetic variants in the regulatory regions of human genes: mechanisms of action on transcription and genomic resources for dissecting these mechanisms // Vavilov Journal of Genetics and Breeding. 2021. V. 25. № 1. P. 18–29. (In Russ.)]
  25. Maurano M.T., Humbert R., Rynes E. et al. Systematic localization of common disease-associated variation in regulatory DNA // Science. 2012. V. 337. № 6099. P. 1190–1195. https://doi.org/10.1126/science.1222794
  26. Bond G.L., Hu W., Levine A.J. MDM2 is a central node in the p53 pathway: 12 years and counting // Curr. Cancer Drug. Targets. 2005. V. 5. № 1. P. 3–8. https://doi.org/10.2174/1568009053332627
  27. Atwal G. S., Bond G. L., Metsuyanim S. et al. Haplotype structure and selection of the MDM2 oncogene in humans // Proc. Natl. Acad. Sci. USA. 2007. V. 104. № 11. P. 4524–4529. https://doi.org/10.1073/pnas.061099810
  28. Zheng L., Tang W., Shi Y. et al. p21 rs3176352 G > C and p73 rs1801173 C > T polymorphisms are associated with an increased risk of esophageal cancer in a Chinese population // PLoS One. 2014. V. 9. № 5. P. e96958. https://doi.org/10.1371/journal.pone.0096958
  29. Wang N., Wang S., Zhang Q. et al. Association of p21 SNPs and risk of cervical cancer among Chinese wo-men // BMC Cancer. 2012. V. 12. P. 589. https://doi.org/10.1186/1471-2407-12-589
  30. Vargas-Torres S.L., Portari E.A., Silva A.L. et al. Roles of CDKN1A gene polymorphisms (rs1801270 and rs1059234) in the development of cervical neoplasia // Tumour Biol. 2016. V. 37. № 8. P. 10469–10478. https://doi.org/10.1007/s13277-016-4850-3
  31. Morgan D. The Cell Cycle: Principles of Control. London: New Science Press, 2007. V. 80. № 3. P. 141–142.
  32. Barbieri R.B., Bufalo N.E., Secolin R. et al. Polymorphisms of cell cycle control genes influence the deve-lopment of sporadic medullary thyroid carcinoma // Eur. J. Endocrinol. 2014. V. 171. № 6. P. 761–767. https://doi.org/10.1530/EJE-14-0461

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (97KB)
3.

Download (211KB)

Copyright (c) 2023 Е.А. Блинова, М.А. Янишевская, А.В. Кореченкова, А.В. Аклеев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies