Ecological and geochemical studies of clastic material from the Bureya landslide after cyclic freezing/thawing in vitro

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper presents the results of experimental study (in vitro) of the transformation of clastic material (CM) sampled from a landslide body at the Bureya water reservoir. СM samples are considered as a model for assessing the influence of abiogenic and biogenic factors on the transformation (destruction, dissolution) of Si-containing minerals under various conditions of cyclic freezing/thawing, i. e., the dry sample; the samples placed in deionized water and in the presence of a solution of low molecular weight peptides. Freezing was carried out at a temperature of –18 °C, and thawing at a different temperature range (+4°C and +23°C). The elemental composition of aqueous solutions was determined by ICP-MS, and the microstructure of the CM surface was determined using scanning electron microscopy. As a result of 5 cycles after 7 days of freezing/thawing of CM samples in deionized water, the content of water-soluble forms of chemical elements (Fe, Ni, Cu, Zn, As, Mo, Ag, Cd, Tl, Bi, As) was below the detection limits of the device (< 0.001 µg/l). However, in the presence of a nutrient medium with peptone and a natural microbial consortium that retained its viability, the concentrations of a number of elements (Al, Ca, Mg, Fe, Mn, As, Hg) in the aquatic environment increased significantly. According to SEM images, a significant change in the microstructure of the surface of the samples CM occurred regardless of the thawing temperature when microorganisms were activated by low-molecular peptides. The formation of biofilms on the surface of CM grains was accompanied by the formation of various isomorphic microaggregates.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Kondratyeva

Institute of Water and Ecology Problems, Far Eastern Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kondratevalm@gmail.com
Ресей, ul. Dikopol’tseva 56, Khabarovsk, 680000

E. Golubeva

Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences; Pacific National University

Email: evg8302@yandex.ru
Ресей, ul. Kim Yu Chen 65, Khabarovsk, 680000; ul. Tiкhookeanskaya 136, Khabarovsk, 680035

N. Konovalova

Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences

Email: turtle_83@rambler.ru
Ресей, ul. Kim Yu Chen 65, Khabarovsk, 680000

Әдебиет тізімі

  1. Glushakova, A.M., Lysak, L.V., Kachalkin, A.V., et al. [Transformation of microbial complexes in the componenst of soil constructions of various genesis (soil, peat, sand) upon freezing/thawing]. Mikrobiologiya, 2021, vol. 90, no.2, pp. 166–178. (in Russian)
  2. Zerkal’, O.V., Makhinov, A.N., Kudymov, A.V., et al. [Bureya landslide on December 11, 2018. Formation conditions and development mechanism specifics]. GeoRisk, 2019, vol. XIII, no. 4, pp.18–30. (in Russian)
  3. Kokovkin, A.A. [Bureya landslide phenomenon: field investigation results and formation model]. Otechestvennaya geologiya, 2020, nos.4–5, pp.48–63. (in Russian)
  4. Kondratyeva, L.M., Litvinenko, Z.N., Filippova, G.M. [Ecological risk of formation of volatile organic substances after a large landslide]. Geoekologiya, 2020, no. 3, pp. 167–174. (in Russian)
  5. Kulakov, V.V., Makhinov, A.N., Kim, V.I., Ostroykhov, A.V. [Catastrophic landslide and tsunami in the Bureya HPP reservoir (the Amur river basin)]. Geoekologiya, 2019, no. 3, pp.12–20 (in Russian)
  6. Makhinov, A.N., Kim, V.I., Ostroykhov, A.V., Matveenko, D.V. [A major landslide in the Bureya River valley and tsunami in the Bureya HPP reservoir]. Vestnik Dal’nevostochnogo otdeleniya RAS, 2019, no. 2, pp. 35–44. (in Russian)
  7. Makhinov, A.N., Makhinova, A.F., Levshina, S.I. [Assessment of soil cover wash-off by water-ice tsunami and water quality in the area of landslide at the Bureya water reservoir]. Meteorologiya i gidrologiya, 2020, no.11, pp. 64–73. (in Russian)
  8. Andres, N., Badoux, A. The Swiss flood and landslide damage database: normalisation and trends. Journal of Flood Risk Management, 2018, e12510 (12 pp.).
  9. Christidis, G. Industrial clays. EMU Notes in Mineralogy, 2011. Chapter 9, pp. 341–414.
  10. Dreischmeier, K., Budke, C., Wiehemeier, L., et al. Boreal pollen contain ice-nucleating as well as ice-binding “antifreeze” polysaccharides. Sci. Rep., 2017, vol. 7, pp. 1–13.
  11. Fesharaki, O., Garcia-Romero, E., Cuevas-Gonzalez, J., Lopez-Martinez, N. Clay mineral genesis and chemical evolution in the Miocene sediments of Samosaguas, Madrid Basin, Spain. Clay minerals, 2007, vol. 42, pp. 187–201.
  12. Gao, M., Li, T., Zhu, J., Yin, H., Yang, Y. An analysis of relationship between the microfracture features and mineral morphology of granite. Advances in Civil Engineering, 2021, Article ID4765731. https://doi.org/10.1155/2021/4765731
  13. Garcia, B., Lemelle, L., Rose-Kog, a E., et al. An experimental model approach of biologically-assisted silicate dissolution with olivine and Escherichia coli – Impact on chemical weathering of mafic rocks and atmospheric CO2 drawdown. Appl. Geochem., 2013, vol. 31, pp. 216–227.
  14. Guenet, H., Davranche, M., Vantelon, D., et al. Evidence of organic matter control on As oxidation by iron oxides in riparian wetlands. Chemical Geology, 2016, vol. 439. https://doi.org/10.1016/j.chemgeo.2016.06.023
  15. Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S.R., Oelkers, E.H. An experimental study of crystalline basalt dissolution from 2 ≤pH ≤ 11 and temperatures from 5 to 75°C. Geochim. Cosmochim Acta, 2011, vol. 75, pp. 5496–5509.
  16. Hou, N., Wen, L., Cao, H., Liu, K., et al. Role of psychotrophic bacteria in organic domestic waste composting in cold regions of China. Bioresour Technol., 2017, vol. 236, pp. 20–28.
  17. Keuschnig, C., Larose, C., Rudner, M., et al. Reduced methane emissions in former permafrost soils driven by vegetation and microbial changes following drainage. Global Change Biology, 2022, vol. 28 (10), pp. 3411–3425.
  18. Kong, L.W., Zeng, Z.X., Bai, W., Wang, M. Engineering geological properties of weathered swelling mudstones and their effects on the landslids occurrence in the Yanji section of the Jilin-Hunchun high-speed railway. Bulletin of Engineering Geology and the Environment, 2018, vol. 77, no. 4, pp. 1491–1503.
  19. Lee, J.-U., Fein, J.B. Experimental study of the effects of Bacillus subtilis on gibbsite dissolution rates under near-neutral pH and nutrient-poor conditions. Chem. Geol., 2000, vol. 166, pp. 193–202.
  20. Li, T., Kong, L., Liu, B. The California bearing ratio and pore structure characteristics of weakly expansive soil in frozen areas. Appl. Sci., 2020, vol. 10. e 7576.
  21. Lim, A.G., Sonke, J.E., Krickov, I.V., et al. Enhanced particulate Hg export at the permafrost boundary, western Siberia. Environmental Pollution, 2019, vol. 254. e 113083.
  22. Luo, J., Tang, L., Ling, X., Geng, L. Experimental and analytical investigation on frost heave characteristics of an unsaturated moderately expansive clay. Cold Reg. Sci. Technol., 2018, vol. 155, pp. 343–353.
  23. Manyapu, V., Lepcha, A., Sharma, S.K., Kumar, R. Role of psychrotrophic bacteria and cold-active enzymes in composting methods adopted in cold regions. Chapter One. Advances in Appl. Microbiology, 2022, vol. 121, pp. 1–26.
  24. Muster, S., Roth, K., Langer, M. et al. PeRL: A circum-Arctic permafrost region pond and lake database. Earth Syst. Sci. Data, 2017, vol. 9, pp. 317–348. https://doi.org/10.5194/essd-9–317–2017
  25. O’Donnell, J.A., Aiken, G.R., Walvoord, M.A., et al. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska. J. Geophys. Res. Biogeosci., 2014, vol. 119, pp. 2155–2170. https://doi.org/10.1002/2014JG002695
  26. Patton, A.I., Rathburn, S.L., Capps, D.M. Landslide response to climate change in permafrost regions. Geomorphology, 2019, vol. 340, pp. 116–128.
  27. Payandi-Rolland, D., Shirokova, L.S., Labonne, F., et al. Impact of freeze-thaw cycles on organic carbon and metals in waters of permafrost peatlands. Chemosphere, 2021, vol. 279. e 130510.
  28. Puente, M.E., Rodriguez-Jaramillo, M.C., Li, C.Y., Bashan, Y. Image analysis for quantification of bacterial rock weathering. J. Microbiol. Methods, 2006, vol. 64, pp. 275–286.
  29. Santi, L.P., Goenadi, D.H. Solubilization of silicate from quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan, 2017, vol. 85 (2), pp.95–104
  30. Schwidetzky, R., Lukas, M., Yazdan, Yar A., Kunert, A.T., et al. Specific ion–protein interactions influence bacterial ice nucleation. Chem. Eur. J., 2021, vol. 27, pp.7402–7407.
  31. Sekerci, F., Balci, N. Microbial acid sulfate weathering of basaltic rocks: implication for enzymatic reactions. Aquat. Geochem., 2022, vol. 28, pp. 155–184.
  32. Shirokova, L.S., Bénézeth, P., Pokrovsky, O.S., et al. Effect of the heterotrophic bacterium Pseudomonas reactans on olivine dissolution kinetics and implications for CO2 storage in basalts. Geochim. Cosmochim. Acta., 2012, vol. 80, pp. 30–50.
  33. Solomon, C.T., Jones, S.E., Weidel, B.C., et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems, 2015, vol. 18, pp. 376–389.
  34. Song, W., Ogawa, N., Oguchi, C.T., Hatta, T., Matsukura, Y. Effect of Bacillus subtilis on granite weathering: a laboratory experiment. Catena, 2007, vol. 70, pp. 275–281.
  35. Stockmann, G.J., Shirokova, L.S., Pokrovsky, O.S., et al. Does the presence of heterotrophic bacterium Pseudomonas reactans affect basaltic glass dissolution rates? Chem. Geol., 2011, vol. 296–297, pp. 1–18.
  36. Struvay, С., Feller, G. Optimization to low temperature activity in psychrophilic enzymes. Int. Journal of Molecular Sciences, 2012, vol. 13(9), pp. 11643–11665.
  37. Štyriaková, I., Štyriak, I., Oberhänsli, H. Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: a laboratory experiment. Mineralogy and Petrology, 2012, vol. 105 (3–4), pp. 135–144. https://doi.org/10.1007/s00710–012–0201–2
  38. Tribelli, P.M., López, N.I. Reporting key features in cold-adapted bacteria. Life, 2018, vol. 8, no. 8. https://doi.org/10.3390/life8010008
  39. Uroz, S., Calvaruso, C., Turpault, M.-P., Frey-Klett, P. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol., 2009, vol. 17, pp. 378–387.
  40. Vincent, W.F., Lemay, M., Allard, M. Arctic permafrost landscapes in transition: towards an integrated Earth system approach. Arct. Sci., 2017, vol. 3, pp. 39–64. doi: 10.1139/as-2016–0027
  41. Wang, Y., Li, C.H., Liu, H., Han, J.Q. Fracture failure analysis of freeze–thawed granite containing natural fracture under uniaxial multi-level cyclic loads. Theoretical and Appl. Fracture Mechanics, 2020, vol. 110. e 102782. https://doi.org/10.1016/j.tafmec.2020.102782
  42. Wang, Y., Yi, X., Gao, S., Liu, H. Laboratory investigation on the effects of natural fracture on fracture evolution of granite exposed to freeze-thaw-cyclic (FTC) loads. Geofluids, 2021. Article ID6650616. 20 pages. https://doi.org/10.1155/2021/6650616
  43. Wauthy, M., Rautio, M., Christoffersen, K.S., Forsstrom, L. et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnology and Oceanography Letters, 2018, no. 3, pp. 186–198.
  44. Wilson, M.J., Wilson, L., Patey, I. The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay Minerals, 2014, vol. 49, pp. 147–164.
  45. Yang, Z., Jianhang, Lv., Shi, W., Zhang, Q., et al. Model test study on stability factors of expansive soil slopes with different initial slope ratios under freeze–thaw conditions. Appl. Sci., 2021, vol. 11. e 8480. https://doi.org/10.3390/app11188480.
  46. Yang, Y., Zhang, N., Wang, J. Study on the effect of negative temperature change on the fracture morphology of granite under impact. Geofluids, 2022. Article ID4918680. 13 p. https://doi.org/10.1155/2022/4918680
  47. Zhang, D., Chen, A.Q., Xiong, D.H., Liu, G.C. Effect of moisture and temperature conditions on the decay rate of purple mudstone in south-western China. Geomorphology, 2013, vol. 182, pp. 125–132.
  48. Zheng, Q., Shen, S-L., Zhou, A-N., Cai, H. Investigation of landslides that occurred in August on the Chengdu–Kunming railway, Sichuan, China. Geosciences, 2019, vol. 9, no.12. e 497.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. General characteristics of the elemental composition of the OM samples used in the experiment.

Жүктеу (200KB)
3. Fig. 2. Proof of the viability of microorganisms after 30 days of freezing at –18°C of OM samples: a – dry sample; b – sample in H2O/D; c – sample in the presence of peptone.

Жүктеу (95KB)
4. Fig. 3. SEM images of the surface of the OM sample in deionized water at defrosting temperature: a, b – 4°C (×2000; ×10000); c, d – 23°C (×1000; ×10000).

Жүктеу (538KB)
5. Fig. 4. SEM image and elemental composition of individual loci of the OM particle surface in an aqueous solution with peptone after cyclic freezing (–18°C) and thawing at a temperature of: a – 4°C (spectra 229–231); b – 23°C (spectra 232–236). MB – bacterial microcolonies, SF – spheroids; KA – colloidal agglomerates; SM – scaly microstructure; SP – stack of plates.

Жүктеу (437KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».