Land-use regression model to assess spatial variation of topsoil pollution in Tarko-Sale

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A hybrid model combining land use regression (LUR) and regression kriging (RK) methods is constructed to assess the variation in spatial pollution of urban topsoil by heavy metals. The environmental monitoring data of nickel and manganese content in the topsoil of the Arctic town Tarko-Sale were used. This hybrid method of modelling topsoil pollution is suitable for all pollutants, for different territories and types of human-induced pollution sources. The use of RK improves the LUR model accuracy: the correlation between test and predicted sets increased by 7 and 17% for nickel and manganese, respectively; and the relative root mean squared error (RRMSE) decreased by 10% for both elements. The results of hybrid modeling of LUR with RK showed that the spatial distribution of manganese and nickel content in topsoil of the city does not depend on city vehicles. This points to the natural origin of manganese and nickel in urban soil in the absence of other pollution sources. The sequential inclusion of different pollution sources in the LUR model is a way to assess the contribution of each of the selected sources to pollution by the selected element. The data from technogenic sources used in the regression model did not show relationship with the pattern of manganese and nickel contamination in the topsoil. The spatial distribution of manganese and nickel in the top layer of soil is controlled rather by natural factors and is not associated with anthropogenic activities. The results of modelling LUR with RK allow us to draw conclusions about the origin of heavy metals in the soil. Previous results based on statistical analysis have shown no association between chromium pollution and anthropogenic sources (roads, industrial areas), and nickel and manganese are also not associated with anthropogenic sources. The sequential inclusion of various sources of pollution makes it possible to evaluate the source contribution to the pollution by certain metal.

About the authors

Е. M. Baglaeva

Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences

Russian Federation

A. G. Buevich

Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences

Russian Federation

A. V. Shichkin

Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences

Russian Federation

A. P. Sergeev

Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences

Russian Federation

A. S. Butorova

Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences

Russian Federation

References

  1. Антропов К.М., Вараксин А.Н. Оценка загрязнения атмосферного воздуха г. Екатеринбурга диоксидом азота методом Land Use Regression // Экологические системы и приборы. 2011. №8. C. 47–54.
  2. Буевич А.Г., Сафина А.М., Сергеев А.П. и др. Анализ статистических зависимостей распределения загрязняющих веществ в поверхностном слое почвы урбанизированных территорий с применением математических моделей (LUR метод) // Геоэкология. 2015. №3. С. 268–279.
  3. Медведев А.Н., Медведев М.А. О применении подхода Land Use Regression для моделирования площадного загрязнения снега при малом количестве точек наблюдения // XI Междунар. конф. «Российские регионы в фокусе перемен». Екатеринбург, 17–19 ноября 2016 г.: сб. докладов. Екатеринбург: Издательство УМЦ УПИ, 2016. Ч. 1. С. 487–494.
  4. Сергеев А.П., Баглаева Е.М., Субботина И.Е. Загрязнение почв города Тарко-Сале тяжелыми металлами // Геоэкология. 2014. №1. С. 28–36.
  5. Aguilera I., Sunyer J., Fernandez-Patier R., Hoek G. et al. Estimation of outdoor NOx, NO2 and BTEX exposure in a cohort of pregnant women using land use regression modeling // Environ. Sci. Technol. 2008. V. 42. P. 815–821.
  6. Brauer M., Hoek G., van Vliet P., Meliefste K. et al. Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems // Epidemiology. 2003. V. 14. P. 228–239.
  7. Briggs D.J., de Hoogh C., Gulliver J., Wills J. et al. A regression-based method for mapping trafficrelated air pollution: application and testing in four contrasting urban environments // Sci. Total. Environ. 2000. V. 253(1–3). P. 151–167.
  8. Carr D., von Ehrenstein O., Weiland S., Wagner C. et al. Modeling annual benzene, toluene, NO2, and soot concentrations on the basis of road traffic characteristics // Environ. Res. 2002. V. 90. P. 111–118.
  9. Hoek G., Beelen R., de Hoogh K., Vienneaue D. et al. A review of land-use regression models to assess spatial variation of outdoor air pollution // Atmos. Environ. 2008. V. 36. P. 4077–4088.
  10. Kashima S., Yorifuji T., Tsuda T., Doi H. Application of land use regression to regulatory air quality data in Japan // Sci Total Environ. 2009. V. 407(8). P. 3055–3062.
  11. Liu Y., Song S., Bi C., Zhao J., Xi, D., Su Z. Occurrence, Distribution and Risk Assessment of Mercury in Multimedia of Soil-Dust-Plants in Shanghai, China // Int. J. Environ. Res. Public Health. 2019. V. 16. 3028. https://doi.org/10.3390/ijerph16173028
  12. Moore D.K., Jerrett M., Mack W.J., Kunzli N. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA // J. Environ. Monitor. 2007. V. 9. P. 246–252.
  13. Ross Z., English P.B., Scalf R., Gunier R. et al. Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses // J. Expo. Sci. Environ. Epidemiol. 2006. V. 16. P. 106–114.
  14. Smith L., Mukerjee S., Gonzales M., Stallings C. et al. Use of GIS and ancillary variables to predict volatile organic compound and nitrogen dioxide levels at unmonitored locations // Atmos. Environ. 2006. V. 40. P. 3773–3787.
  15. Stedman J., Vincent K., Campbell G., Goodwin J., Downing C. New high resolution maps of estimated background ambient NOx and NO2 concentrations in the U.K. // Atmos. Environ. 1997. V. 31. P. 3591–3602.
  16. Taylor K. Summarizing multiple aspects of model performance in a single diagram // J. Geophys. Res. 2001. V. 106. P. 7183–7192. https://doi.org/10.1029/2000JD900719

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».