Geophysical methods for the study of natural and human-induced changes in ground massifs of the permafrost zone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article considers examples of experimental studies of natural and human-induced changes in the properties of cryolithozone with different lithology. Studies have shown that in order to control changes in the properties of an engineering geological section, geophysical monitoring of frozen rocks subject to degradation is of particular importance. An approach to the study of the state and properties of cryolithozone soils in situ is presented using the example of complex geophysical work at hydraulic engineering facilities in Western Yakutia, which helps us to understand the spatial and temporal patterns of the development of active thawed zones (taliks) over a relatively short time interval. Using the example of Bilibino NPP, built on permafrost, it is shown that the elastic properties of rocky frozen soils, usually fractured in the upper part of the section, depend not only on lithology, texture and structure, but also on the cryogenic state of rocks. The patterns of changes in the seismic properties of frozen hard rocks at this industrial site were analyzed as a result of the degradation of permafrost under the main structures associated with the heat release of reactor units for more than 30 years. It is shown that under the influence of the warming effect on the rocky frozen ground, the increment of seismic intensity can increase on average to +0.3 points relative to the surface of permafrost (initial conditions). The characteristics of seismic impacts (the values of PGA and the spectrum of the Samax reaction) change accordingly.

Full Text

Restricted Access

About the authors

B. A. Trifonov

Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences

Author for correspondence.
Email: igelab@mail.ru
Russian Federation, Bldg. 2, 13, Ulansky All., Moscow, 101000

S. Yu. Milanovsky

Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences; Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: svetmil@mail.ru
Russian Federation, Bldg. 2, 13, Ulansky All., Moscow, 101000; Bldg. 1, 10, B. Gruzinskaya St., Moscow, 123242

V. V. Nesynov

Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences

Email: igelab@mail.ru
Russian Federation, Bldg. 2, 13, Ulansky All., Moscow, 101000

References

  1. Boikov, S.A., Velikin, S.A., Snegirev, A.M., at. el. [The study of filtration taliks at the base of the ground dam of Sytykan HPP using engineering geophysics]. In: [Geophysical studies of the cryolithozone]. Moscow, ONTI PNTs RAS Publ., 2000, issue 3, pp. 58–71. (in Russian)
  2. Velikin, S.A. [Complex geophysical study of the engineering geocryological state of the foundations of hydropower engineering and mining structures of the Yakut diamond province]. Extended abstract of Dr.Sci. (Techn.) dissertation. Yakutsk, 2020. 43 p. (in Russian)
  3. Velikin, S.A., Istratov, V.A. [Possibilities of cross-well radiowave geointroscopy by the example of the bypass filtration section of the right-bank junction of the Vilyuiskaya HPP-1]. In: [Sustainability of natural and technical cryolithozone systems in the context of climate change. Proc. All-Russian conference with international participation dedicated to the 150th anniversary of M.I. Sumgin]. R.V. Zhang, A.N. Fedorov, and M.N. Grigoriev, Eds., Yakutsk, 2023, pp. 238–240. (in Russian)
  4. Voronkov, O.K. [Engineering seismics in the cryolithozone (study of the structure and properties of frozen and thawed rocks and massifs]. St. Petersburg. Vedeneev VNIIG Publ., 2008, 300 p. (in Russian)
  5. Voronkov, O.K. [Engineering and seismic studies of the structure and properties of hard rock massifs in the permafrost zone]. Extended abstract of Dr. Sci. (Geol.–Min.) dissertation. Leningrad, LSU Publ., 1987, 223 p. (in Russian)
  6. Zabolotnik, P.S., Zabolotnik, S.I. [The condition of soils and rocks at the base of buildings of the Yakut thermal power plant]. Novosibirsk, SB RAS Publ., 2022, 118 p. (in Russian)
  7. Ivanov, Yu.G. [The use of a microseismic signal from powerful man-made sources to study the state of the soil mass at internal points of the medium]. Geotekhnika, 2022, vol. XIV, no. 3. pp. 72–82.
  8. https://doi.org/10.25296/2221-5514-2022-14-3-72-82 (in Russian)
  9. [Comprehensive engineering and geophysical research in the construction of hydraulic engineering structures]. A.I. Savich, B.D. Kuyundzhic, Eds., Moscow, Nedra Publ., 1990, 462 p. (in Russian)
  10. Milanovskii, S.Yu., Trifonov, B.A. [Seismic effects on permafrost in conditions of its degradation] In: [Proc. of the VII Intern. Conf. “Seismology and Engineering Seismology”, dedicated to the 100th anniversary of Nationwide Leader Haydar Aliyev]. 2023, Baku, pp. 38–44. (in Russian)
  11. Ratnikova, L.I., Levshin, A.L. [Calculation of spectral characteristics of thin-layered media]. Fizika Zemli, 1967, no. 2, pp. 41–53. (in Russian)
  12. [Guidelines for accounting for seismic impacts in the design of hydraulic structures (to section 5, chapter of SNiP II-A. 12-69)]. Leningrad, Vedeneev VNIIG Publ., 1977, 163 p. (in Russian)
  13. Savich, A.I. Yashchenko, Z.G. [Studies of elastic and deformation properties of rocks by seismoacoustic methods]. Epinat’eva A.M., Ed., Moscow, Nedra Publ., 1979, 214 p. (in Russian)
  14. Sedov, B.M. [Seismic studies in the permafrost zone]. Moscow, Nauka Publ., 1988, 184 p. (in Russian)
  15. Sobol, S.V. [Water reservoirs in the permafrost zone]. Nizhny Novgorod, NNGASU Publ., 2007, 161 p. (in Russian)
  16. Sudakova, M.S., Brushkov, A.V., Velikin, S.A., et al. [Geophysical methods in geocryological monitoring]. Vestnik Moskovskogo universiteta. Series 4. Geologiya, 2022, no. 6, pp.141–151. https://doi.org/10.33623/0579-9406-2022-6-141-151 (in Russian)
  17. Trifonov, B.A., Milanovskii, S.Yu., Velikin, S.A., Istratov, V.A. [Seismic impacts on permafrost]. In: [Sustainability of natural and technical cryolithozone systems in the context of climate change. Proc. All-Russian conference with international participation dedicated to the 150th anniversary of M.I. Sumgin]. R.V. Zhang, A.N. Fedorov, and M.N. Grigoriev, Eds., Yakutsk, 2023, pp. 227–229. (in Russian)
  18. Trifonov, B.A., Milanovskii, S.Yu., Nesynov, V.V. [Peculiarities of seismic microzoning on permafrost]. Voprosy inzhenernoi seismologii, 2023, vol. 50, no. 4, pp. 106–114. https://doi.org/10.21455/VIS2023.4-7 (in Russian)
  19. Trifonov, B.A., Milanovskii, S.Yu., Nesynov, V.V. [Assessment of seismic impacts in conditions of permafrost degradation]. Vestnik KRAUNTs. Nauki o Zemle, 2022, issue 56, no. 4, pp. 59–73. (in Russian)
  20. Frolov, A.D. [Electrical and elastic properties of frozen rocks and ice]. Pushchino, ONTI PNC RAS, 2005, 607 p. (in Russian)
  21. Zhang, R.V., Velikin, S.A., Kuznetsov, G.I., Kruk, N.V. [Ground dams in the cryolithozone of Russia]. Novosibirsk, Geo Academic Publ., 2019, 427 p. (in Russian)
  22. Bardet, J.P., Tobita, T. NERA. A computer program for nonlinear earthquake site response analyses of layered soil deposits. Department of Civil Engineering, University of Southern California, April 2001. 44 p.
  23. Chaljub, E., Maufroy, E., Moczo, P. et al. 3-D numerical simulations of earthquake ground motion in sedimentary basins: testing accuracy through stringent models, Geophysical Journal International, 2015, vol. 201, issue 1, pp. 90–111. https://doi.org/10.1093/gji/ggu472
  24. Istratov, V.A., Frolov, A.D. Radio wave borehole measurements to determine in situ the electric property distribution in a massif, J. Geophys. Res. Planets, 2003, vol. 108, no. E4, pp. 8038–8043. https://doi.org/10.1029/2002JE001880
  25. Milanovskiy, S., Velikin, S., Cherepanov, A., Petrunin, A., Istratov, V. Permafrost and objects of economic activity in Siberia – risks and facts. In: Proc. 27th General Assembly of the Int. Union of Geodesy and Geophysics, abstract № IUGG19-0488, Montreal, Canada, 2019 (file:///C:/Users/777/Downloads/astractDetails_Monreal2019%20(1).pdf)
  26. Milanovskiy, S., Velikin, S., Petrunin, A. Geophysical monitoring of permafrost in Yakutia – observation and modeling. In: Proc. Int. Conf. “Solving the puzzles from Cryosphere”, Pushchino, 2019, pp. 123–124. https://istina.msu.ru/publications/article/257939745/
  27. Milanovskiy, S., Velikin, S., Petrunin, A., Istratov, V. Geophysical monitoring of engineering constructions in Western Yakutia and study of coupled problem of temperature and seepage fields in permafrost near hydro Unit. In: Proc. of 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference (GeoQuebec), Quebec City, Canada, September 20–23, 2015, 9 p. (https://www.researchgate.net/publication/354447452_Geophysical_Monitoring_of_Engineering_Constructions_in_Western_Yakutia_and_Study_of_Coupled_Problem_of_Temperature_and_Seepage_Fields_in_Permafrost_near_Hydro_Unit)
  28. Ruiz, P., Penzien, J. Probabilistic study of the behavior of structures during earthquake. Report No. UCB/EERC-69-3. (PB 187 886) A06. Earthquake Engineering Research Center. University of California, Berkeley, CA, March 1969. 45 p.
  29. Parazoo, N.C., Koven, C.D., Lawrence, D. et al. Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions, Cryosphere, 2018, vol. 12, no. 1, pp.123–144. https://doi.org/10.5194/tc-12-123-2018.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geological section (a), zero isotherms and dynamics of talik contour change (b), radarogram (c) along the Sytykanskaya dam axis, 1997-1998 [1].

Download (595KB)
3. Fig. 2. Sytykansky hydroscheme: a - distribution of negative anomalies of natural electric field (EF) potential in the upper reservoir embankment; negative anomalies correspond to infiltration zones [1]; b - area control of bypass filtration in the melt zone of the right bank abutment according to joint interpretation of borehole thermometry and electrotomography data [2].

Download (609KB)
4. Fig. 3. Examples of geoelectric sections: on the left - effective resistivity (ρ); on the right - relative permittivity (ε), along the profile of wells (4-5-6-7-10) in the frozen massif in the cross of the shoreline of the Sytykansky hydroelectric complex (Western Yakutia); ORVP observations: top - March 2001; middle - August 2001; bottom - March 2002. Frozen rocks are characterised by high ρ and low ε; thawed rocks are characterised by low ρ and high ε. The bottom level near the dam is 301 m [19, 26]. The horizontal axes show the distance from the shoreline and the vertical axes show the absolute depth marks, [m]. Translated with www.DeepL.com/Translator (free version)

Download (505KB)
5. Fig. 4. Schematic location of the observation profile and piezometric (injection) well, right-bank abutment of the Sytykan reservoir, Western Yakutia (a). Regime (repeated) electrotomographic measurements to identify filtration windows and filtration rates. Filtration window at a depth of 25 m in the area of PK100m at 90 min after injection (b) [2].

Download (448KB)
6. Fig. 5. Geoelectric sections based on RWGI results: 1999-2022 with gamma ray logging and electrical resistivity diagrams. Thermometry by wells for 1999, 2013 and 2022 is given [3].

Download (325KB)
7. Fig. 6. Results of measuring microseismic signal amplitudes and soil temperature in borehole NB-5 in 2019 and 2022: 1 - bulk soil; 2 - dark grey dolerite, strong, strongly fractured, in some places destroyed to large rubble and clumps; 3 - interlayering of siltstones, sandstones and dolomite; 4 - dolomitised limestone, in some places destroyed to sandy loam with rubble and gravel [7].

Download (478KB)
8. Fig. 7. Example of changes in the initial state of frozen rock soils along the section at the BWPP site during its operation since 1976. Graphs of temperature changes in well 8 (presumably summer, 1991), well 10 (presumably winter, 1991) and well 12 (regime measurements during 2012).

Download (458KB)
9. Fig. 8. Examples of calculated accelerograms and corresponding response spectra Sa (5%) - 10-2 in fractions of g from the supposed local earthquake: M1 (model 1) - on the surface of frozen rock strata of the BWPP site (Amax = 9. 1 cm/s2); M2 (model 2) - on the surface of thawed rock strata at a total thaw depth of 35 m in 1991 (Amax = 10.0 cm/s2). 1 cm/s2); M2 (model 2) - on the surface of thawed rock strata at a total thaw depth of 35 m in 1991 (Amax = 10.0 cm/s2); M4 (model 4-predicted) - on the surface at a predicted total thaw depth of 65 m by 2023 (Amax = 12.0 cm/s2).

Download (366KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».