CAUSES OF THERMAL SUFFOSION ATTENUATION ON THE BESTYAKH TERRACE OF THE LENA RIVER, CENTRAL YAKUTIA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents the results of thermal suffosion study in the Ulakhan-Taryn Creek valley, Central Yakutia, where intrapermafrost groundwater is discharged. Interpretation of satellite images and analysis of field data from landscape surveys, electrical resistivity tomography studies and ground temperature observations were used to determine the factors contributing to the attenuation of thermal suffosion in sandy deposits of the IV (Bestyakh) terrace of the Lena River. Successional stages of revegetation in the accumulation zones of sands washed off by subsurface flow were examined. Vegetation succession was found to modify geocryological conditions in the groundwater discharge area, sometimes leading to its complete freezing. Conditions favorable both for permafrost aggradation and degradation may develop, depending on the landscape type. Ground temperature data indicate that the active layer thickness in sands at a thermal suffosion site covered by sparse pine forest is 3.5 m, while the mean annual permafrost temperature at the depth of zero annual amplitude is –0.2°С. In 2014, a subaerial talik began to form at this site, the bottom of which lowered from 3.5 m down to 6.0 m. At a larch site with tussocks, the active layer thickness is within 0.5–0.8 m and the mean annual permafrost temperature is about –2.0°С. An ERT survey provided information on the current permafrost and groundwater conditions, where groundwater discharge has ceased. A scenario is proposed describing the changes in the discharge area caused by permafrost disturbance above an aquifer. Formation of an underground cavity and collapse of the overlying permafrost layer resulting in characteristic depressions and sinkholes at the surface promote ground freezing in the discharge zone. Mechanical blocking the flow paths reduces the flow velocity promoting the restoration of permafrost and cutting off the area of soil removal by thermal suffosion. Further on, this attenuates the thermal suffosion. Its active phase can shift spatially due to thawing the pore ice in the permafrost in contact with the confined aquifer, widening soil voids and forming new flow pathways. Thus, attenuation of thermal suffosion on the Bestyakh Terrace of the Lena River results from the combination of internal (impeded flow) and external (vegetation succession) factors.

About the authors

L. A. Gagarin

Melnikov Permafrost Institute, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: gagarinla@gmail.com
Russia, 677010, Yakutsk, Merzlotnaya ul., 36

V. V. Olenchenko

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: olenchenkovv@yandex.ru
Russia, 630090, Novosibirsk, pr. akad. Koptyuga 3

N. A. Pavlova

Melnikov Permafrost Institute, Siberian Branch, Russian Academy of Sciences

Email: olenchenkovv@yandex.ru
Russia, 677010, Yakutsk, Merzlotnaya ul., 36

References

  1. Anisimova, N.P. Formation of groundwater chemistry in taliks: case study of Central Yakutia. Moscow, Nauka Publ., 1971, 196 р. (in Russian)
  2. Boitsov, A.V. Geocryology and underground water in permafrost. Tyumen, TyuGNGU Publ., 2011, 178 p. (in Russian)
  3. Varlamov, S.P., Skachkov, Yu.B., Skryabin, P.N. Temperature regime of permafrost landscapes in Central Yakutia. Yakutsk, IM SO RAN Publ., 2002, 218 p. (in Russian)
  4. Gagarin, L.A. Assessment of current settings of subaerial taliks in Central Yakutia. Proc. of the National conference on underground waters in Eastern Russia. Yakutsk, IM SO RAN Publ., 2015, pp. 76–80. (in Russian)
  5. Gagarin, L., Bazhin, K., Olenchenko, V., Ogonerov, V., Wu, Q. Revealing potential thermo-suffosional soil loosening sites along A-360 Lena Federal Highway, Central Yakutia. Kriosfera Zemli, 2019, no. 3 (23), pp. 61–68. (in Russian)
  6. Gagarin, L.A., Semernya, A.A., Lebedeva, L.S. The study of thermal suffosion processes in Central Yakutia: a case study of Ulakhan-Taryn site. Geoekologia, 2016, no. 3, pp. 252–262. (in Russian)
  7. Galanin, A.A., Pavlova, M.R., Shaposhnikov, G.I., Lytkin, V.M. [Tukulans: sandy deserts of Yakutia. Priroda, 2016, no. 11, pp. 44–55. (in Russian)
  8. Efimov, A.I. Nonfreezing freshwater spring Ulakhan-Taryn in Central Yakutia. Permafrost Studies in the Republic of Yakutia, 1952, no. 3, pp. 60–105. (in Russian)
  9. Ivanov, M.S. Cryogenic structure of Quaternary deposits in Lena–Aldan depression. Novosibirsk, Nauka Publ., 1984, 126 p. (in Russian)
  10. Kamaletdinov, V.A. Base relief and structure of the Quaternary cover in the Lena-Amga interfluve. Geology of the Cenozoic of Yakutia. Yakutsk, YaF SO AN SSSR, 1982, pp. 94–103. (in Russian)
  11. Kolesnikov, A.B. Influence of modern climate parameters on the conditions of infiltration feeding of aquifers in Central Yakutia. Proc. National conference on underground waters in Eastern Russia. Yakutsk, IM SO RAN Publ., 2015, pp. 114–117. (in Russian)
  12. Lytkina, L.P., Mironova, S.I. Postfire succession in a forest of the cryolithozone: the example of Central Yakutia. Ekologiya, 2009, no. 3, pp. 168–173. (in Russian)
  13. Olenchenko, V.V., Gagarin, L.A., Khristoforov, I.I., Kolesnikov, A.B., Efremov, V.S. The structure of a site with thermal suffosion processes within Bestyakh terrace of the Lena River, according to geophysical data. Kriosfera Zemli, 2017, no. 5 (21), pp. 16–26. (in Russian)
  14. Pavlova, N.A., Kolesnikov, A.B., Efremov, V.S., and Shepelev, V.V. Groundwater chemistry in intrapermafrost taliks in Central Yakutia. Vodnye resursy, 2016, no. 2 (43), pp. 216–227. (in Russian)
  15. Pravkin, S.A., Bolshiyanov, D.Yu., Pomortsev, O.A., Savelieva, L.A., et al. The relief, structure and age of Quaternary deposits in the Lena River valley, the Yakutian bend] Vestnik SPbGU, 2018, no. 2 (63), pp. 209–229. (in Russian).
  16. Rumyantsev, E.A. Icing process and the phenomenon of winter pressure suffusion. Trudy Khabarovskogo in-ta inzhenerov zh/d transporta, 1966, v. 21, pp. 4–15. (in Russian)
  17. Semernya, A.A., Gagarin, L.A., Bazhin, K.I. Cryohydrogeological features of the site of intrapermafrost aquifer distribution at the Eruu spring area (Central Yakutia). Kriosfera Zemli, 2018, no. 2 (22), pp. 29–38. (in Russian)
  18. Timofeev, P.A., Isaev, A.P., Shcherbakov, I.P. Forests of the middle taiga subzone in Yakutia. Yakutsk, YaNTs SO RAN Publ., 1994, 140 p. (in Russian)
  19. Fedorov, A.N. Permafrost landscapes in Yakutia: identification technique and mapping issues. Yakutsk. IM SO RAN Publ., 1991. 140 p. (in Russian)
  20. Shender, N.I., Boitsov, A.V., Tetelbaum, A.S. Formation of taliks and high-temperature frozen soil in Central Yakutia. Proc. the first conference of Russian geocryologists. Moscow, MGU Publ., 1996, book 1, vol. 3, pp. 525–537. (in Russian)
  21. Shepelev, V.V. Evaluation of the erosion-suffosion activity of springs in Central Yakutia. Izvestiya vuzov: Geologiya i razvedka, 1972, no. 9, pp. 88–92. (in Russian)
  22. Shepelev, V.V., Boitsov, A.V., Oberman, N.G., Petchenko, M.F., Sannikova, A.V., et al. Monitoring of underground waters in the cryolithozone. Yakutsk, IM SO RAN Publ., 2002, 172 p. (in Russian)
  23. Shestakova, A.A. Mapping of permafrost landscapes taking into account vegetation successions (on the example of the Leno-Aldan interfluve). Sergeev Readings. The role of engineering geology and surveys at the pre-project stages of construction development of territories. Moscow, RUDN Publ., 2012, pp. 153–158. (in Russian)
  24. Czudek, T., Demek, J. Thermokarst in Siberia and its influence on the development of lowland relief. Quaternary Research, 1970, no. 1 (1), pp. 103–120.
  25. Embleton, C., Thornes, J.B. Process in geomorphology. New York, Wiley, 1979, 436 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (762KB)
3.

Download (1MB)
4.

Download (2MB)
5.

Download (3MB)
6.

Download (567KB)
7.

Download (216KB)
8.

Download (436KB)
9.

Download (144KB)
10.

Download (1MB)
11.

Download (1MB)

Copyright (c) 2023 Л.А. Гагарин, В.В. Оленченко, Н.А. Павлова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».