Strategies and first-absorption times in the random walk game
- 作者: Krivonosov M.I.1, Tikhomirov S.N.1
-
隶属关系:
- Lobachevsky State University of Nizhny Novgorod
- 期: 卷 31, 编号 3 (2023)
- 页面: 334-350
- 栏目: Articles
- URL: https://journals.rcsi.science/0869-6632/article/view/250959
- DOI: https://doi.org/10.18500/0869-6632-003043
- EDN: https://elibrary.ru/SWQCCC
- ID: 250959
如何引用文章
全文:
详细
作者简介
Mikhail Krivonosov
Lobachevsky State University of Nizhny Novgorod603950 Nizhny Novgorod, Gagarin Avenue, 23
Sergei Tikhomirov
Lobachevsky State University of Nizhny Novgorod603950 Nizhny Novgorod, Gagarin Avenue, 23
参考
- Coolidge JL. The gambler’s ruin. Annals of Mathematics. 1909;10(4):181–192. DOI: 10.2307/ 1967408.
- Fller WD. An Introduction to Probability Theory and Its Applications. Wiley: New York; 1950. 704 p.
- Redner S. A Guide to First-Passage Processes. Cambridge: Cambridge University Press; 2001. 312 p. doi: 10.1017/CBO9780511606014.
- Hausner M. Games of Survival. Report No. RM-776. Santa Monica: The RAND Corporation; 1952. 7 p.
- Peisakoff MP. More on Games of Survival. Report No. RM-884. Santa Monica: The RAND Corporation; 1952. 20 p.
- Kmet A, Petkovsek M. Gambler’s ruin problem in several dimensions. Advances in Applied Mathematics. 2002;28(2):107–118. doi: 10.1006/aama.2001.0769.
- Romanovskii IV. Game-type random walks. Theory of Probability & Its Applications. 1961;6(4): 393–396. doi: 10.1137/1106051.
- Nisan N, Roughgarden T, Tardos E, Vazirani VV. Algorithmic Game Theory. Cambridge: Cambridge University Press; 2007. 754 p. doi: 10.1017/CBO9780511800481.
- Pearson K. The problem of the random walk. Nature. 1905;72:294. doi: 10.1038/072294b0.
- Zaburdaev V, Denisov S, Klafter J. Levy walks. Reviews of Modern Physics. 2015;87(2):483–530. doi: 10.1103/RevModPhys.87.483.
- Benichou O, Loverdo C, Moreau M, Voituriez R. Intermittent search strategies. Reviews of Modern Physics. 2011;83(1):81–129. doi: 10.1103/RevModPhys.83.81.
- Rhee I, Shin M, Hong S, Lee K, Kim SJ, Chong S. On the Levy-walk nature of human mobility. IEEE/ACM Transactions on Networking. 2011;19(3):630–643. doi: 10.1109/TNET.2011.2120618.
- Fauchald P. Foraging in a hierarchical patch system. The American Naturalist. 1999;153(6): 603–613. doi: 10.1086/303203.
- Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature. 2007;449(7159):209–212. doi: 10.1038/nature06060.
- Reynolds A, Ceccon E, Baldauf C, Karina Medeiros T, Miramontes O. Levy foraging patterns of rural humans. PLOS ONE. 2018;13(6):e0199099. doi: 10.1371/journal.pone.0199099.
- Pyke GH. Understanding movements of organisms: it’s time to abandon the Levy foraging hypothesis. Methods in Ecology and Evolution. 2015;6(1):1–16. doi: 10.1111/2041-210X.12298.
- LaScala-Gruenewald DE, Mehta RS, Liu Y, Denny MW. Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies. Ecological Modelling. 2019;404:69–82. doi: 10.1016/j.ecolmodel.2019.02.015.
- Krivonosov MI, Tikhomirov SN. Random Walk Game [Electronic resource]. 2020. Available from: https://play.google.com/store/apps/details?id=com.scigames.RWGame (Google Play Store), https://apps.apple.com/us/app/random-walk/id1564589250 (AppStore).
- Taylor HM, Karlin S. An Introduction to Stochastic Modeling. San Diego: Academic Press; 2008. 648 p.
- Kemeny JG, Snell JL. Finite Markov Chains. New York: Springer-Verlag; 1983. 226 p.
- Darroch JN, Seneta E. On quasi-stationary distributions in absorbing discrete-time finite Markov shains. Journal of Applied Probability. 1965;2(1):88–100. doi: 10.2307/3211876.
- Zhang J, Calabrese C, Ding J, Liu M, Zhang B. Advantages and challenges in using mobile apps for field experiments: A systematic review and a case study. Mobile Media & Communication. 2018;6(2):179–196. doi: 10.1177/2050157917725550.
补充文件
