Strategies and first-absorption times in the random walk game
- Authors: Krivonosov M.I.1, Tikhomirov S.N.1
-
Affiliations:
- Lobachevsky State University of Nizhny Novgorod
- Issue: Vol 31, No 3 (2023)
- Pages: 334-350
- Section: Articles
- URL: https://journals.rcsi.science/0869-6632/article/view/250959
- DOI: https://doi.org/10.18500/0869-6632-003043
- EDN: https://elibrary.ru/SWQCCC
- ID: 250959
Cite item
Full Text
Abstract
About the authors
Mikhail Igorevich Krivonosov
Lobachevsky State University of Nizhny Novgorod603950 Nizhny Novgorod, Gagarin Avenue, 23
Sergei Nikolaevich Tikhomirov
Lobachevsky State University of Nizhny Novgorod603950 Nizhny Novgorod, Gagarin Avenue, 23
References
- Coolidge JL. The gambler’s ruin. Annals of Mathematics. 1909;10(4):181–192. DOI: 10.2307/ 1967408.
- Fller WD. An Introduction to Probability Theory and Its Applications. Wiley: New York; 1950. 704 p.
- Redner S. A Guide to First-Passage Processes. Cambridge: Cambridge University Press; 2001. 312 p. doi: 10.1017/CBO9780511606014.
- Hausner M. Games of Survival. Report No. RM-776. Santa Monica: The RAND Corporation; 1952. 7 p.
- Peisakoff MP. More on Games of Survival. Report No. RM-884. Santa Monica: The RAND Corporation; 1952. 20 p.
- Kmet A, Petkovsek M. Gambler’s ruin problem in several dimensions. Advances in Applied Mathematics. 2002;28(2):107–118. doi: 10.1006/aama.2001.0769.
- Romanovskii IV. Game-type random walks. Theory of Probability & Its Applications. 1961;6(4): 393–396. doi: 10.1137/1106051.
- Nisan N, Roughgarden T, Tardos E, Vazirani VV. Algorithmic Game Theory. Cambridge: Cambridge University Press; 2007. 754 p. doi: 10.1017/CBO9780511800481.
- Pearson K. The problem of the random walk. Nature. 1905;72:294. doi: 10.1038/072294b0.
- Zaburdaev V, Denisov S, Klafter J. Levy walks. Reviews of Modern Physics. 2015;87(2):483–530. doi: 10.1103/RevModPhys.87.483.
- Benichou O, Loverdo C, Moreau M, Voituriez R. Intermittent search strategies. Reviews of Modern Physics. 2011;83(1):81–129. doi: 10.1103/RevModPhys.83.81.
- Rhee I, Shin M, Hong S, Lee K, Kim SJ, Chong S. On the Levy-walk nature of human mobility. IEEE/ACM Transactions on Networking. 2011;19(3):630–643. doi: 10.1109/TNET.2011.2120618.
- Fauchald P. Foraging in a hierarchical patch system. The American Naturalist. 1999;153(6): 603–613. doi: 10.1086/303203.
- Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature. 2007;449(7159):209–212. doi: 10.1038/nature06060.
- Reynolds A, Ceccon E, Baldauf C, Karina Medeiros T, Miramontes O. Levy foraging patterns of rural humans. PLOS ONE. 2018;13(6):e0199099. doi: 10.1371/journal.pone.0199099.
- Pyke GH. Understanding movements of organisms: it’s time to abandon the Levy foraging hypothesis. Methods in Ecology and Evolution. 2015;6(1):1–16. doi: 10.1111/2041-210X.12298.
- LaScala-Gruenewald DE, Mehta RS, Liu Y, Denny MW. Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies. Ecological Modelling. 2019;404:69–82. doi: 10.1016/j.ecolmodel.2019.02.015.
- Krivonosov MI, Tikhomirov SN. Random Walk Game [Electronic resource]. 2020. Available from: https://play.google.com/store/apps/details?id=com.scigames.RWGame (Google Play Store), https://apps.apple.com/us/app/random-walk/id1564589250 (AppStore).
- Taylor HM, Karlin S. An Introduction to Stochastic Modeling. San Diego: Academic Press; 2008. 648 p.
- Kemeny JG, Snell JL. Finite Markov Chains. New York: Springer-Verlag; 1983. 226 p.
- Darroch JN, Seneta E. On quasi-stationary distributions in absorbing discrete-time finite Markov shains. Journal of Applied Probability. 1965;2(1):88–100. doi: 10.2307/3211876.
- Zhang J, Calabrese C, Ding J, Liu M, Zhang B. Advantages and challenges in using mobile apps for field experiments: A systematic review and a case study. Mobile Media & Communication. 2018;6(2):179–196. doi: 10.1177/2050157917725550.
Supplementary files
