The impact of internal noise on the performance of convolutional neural network
- Autores: Semenova N.I.1
-
Afiliações:
- Saratov State University
- Edição: Volume 33, Nº 6 (2025)
- Páginas: 898-916
- Seção: Nonlinear dynamics and neuroscience
- URL: https://journals.rcsi.science/0869-6632/article/view/358028
- DOI: https://doi.org/10.18500/0869-6632-003177
- EDN: https://elibrary.ru/VYXWAN
- ID: 358028
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Nadezhda Semenova
Saratov State University
ORCID ID: 0000-0002-9180-3030
Código SPIN: 6741-5068
Scopus Author ID: 57193880346
Researcher ID: HGD-4629-2022
ul. Astrakhanskaya, 83, Saratov, 410012, Russia
Bibliografia
- LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. Vol. 521, no. 7553. P. 436-444 doi: 10.1038/nature14539.
- Krizhevsky A., Sutskever I., Hinton G. E. ImageNet classification with deep convolutional neural networks // Commun. ACM. 2017. Vol. 60, no. 6. P. 84-90 doi: 10.1145/3065386.
- Maturana D., Scherer S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition // In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015, Hamburg, Germany. 2015. P. 922-928 doi: 10.1109/IROS.2015.7353481.
- Graves A., Mohamed A., Hinton G. Speech recognition with deep recurrent neural networks // In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013, Vancouver, BC, Canada. 2013. P. 6645-6649 doi: 10.1109/ICASSP.2013.6638947.
- Kar S., Moura J. M.,F. Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise // IEEE Transactions on Signal Processing. 2009. Vol. 57, no. 1. P. 355-369 doi: 10.1109/TSP.2008.2007111.
- AI and compute . [Electronic resource]. 2018. Available from: https://openai.com/index/ai-and-compute/https://openai.com/index/ai-and-compute/.
- Hasler J., Marr H. B. Finding a roadmap to achieve large neuromorphic hardware systems // Front. Neurosci. 2013. Vol. 7. P. 118 doi: 10.3389/fnins.2013.00118.
- Gupta S., Agrawal A., Gopalakrishnan K., Narayanan P. Deep Learning with Limited Numerical Precision // In: Proceedings of the 32nd International Conference on International Conference on Machine Learning. 2015. Vol. 37. P. 1737-1746 doi: 10.1109/72.80206.
- Karniadakis G. E., Kevrekidis I. G., Lu L., Perdikaris P., Wang S., Yang L. Physics-informed machine learning // Nat. Rev. Phys. 2021. Vol. 3. P. 422-440 doi: 10.1038/s42254-021-00314-5.
- Aguirre F., Sebastian A., Le Gallo M., Song W., Wang T., Yang J. J., Lu W., Chang M.-F., Ielmini D., Yang Y., Mehonic A., Kenyon A., Villena M. A., Roldán J. B., Wu Y., Hsu H u.-H., Raghavan N., Suñé J., Miranda E., Eltawil A., Setti G., Smagulova K., Salama K. N., Krestinskaya O., Yan X., Ang K.-W., Jain S., Li S., Alharbi O., Pazos S., Lanza M. Hardware implementation of memristor-based artificial neural networks // Nat. Commun. 2024. Vol. 15. P. 1974 doi: 10.1038/s41467-024-45670-9.
- Chen Y., Nazhamaiti M., Xu H., Meng Y., Zhou T., Li G., Fan J., Wei Q., Wu J., Qiao F., Fang L., Dai Q. All-analog photoelectronic chip for high-speed vision tasks // Nature. 2023. Vol. 623. P. 48-57 doi: 10.1038/s41586-023-06558-8.
- Brunner D., Soriano M. C., Mirasso C. R., Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states // Nat. Commun. 2023. Vol. 4. P. 1364 doi: 10.1038/ncomms2368.
- Tuma T., Pantazi A., Le Gallo M., Sebastian A., Eleftheriou E. Stochastic phase-change neurons // Nature Nanotech. 2016. Vol. 11. P. 693-699 doi: 10.1038/nnano.2016.70.
- Torrejon J., Riou M., Araujo F., Tsunegi S., Khalsa G., Querlioz D., Bortolotti P., Cros V., Yakushiji K., Fukushima A., Kubota H., Yuasa S h., Stiles M. D., Grollier J. Neuromorphic computing with nanoscale spintronic oscillators // Nature. 2017. Vol. 547. P. 428-431. 10.1038/nature2301110.1038/nature23011.
- Psaltis D., Brady D., Gu X. G., Lin S. Holography in artificial neural networks // Nature. 1990. Vol. 343. P. 325-330 doi: 10.1038/343325a0.
- Bueno J., Maktoobi S., Froehly L., Fischer I., Jacquot M., Larger L., Brunner D. Reinforcement learning in a large-scale photonic recurrent neural network // Optica. 2018. Vol. 5, no. 6. P. 756-760 doi: 10.1364/OPTICA.5.000756.
- Lin X., Rivenson Y., Yardimci N. T., Veli M., Jarrahi M., Ozcan A. All-optical machine learning using diffractive deep neural networks // Science. 2018. Vol. 361. P. 1004-1008. 10.1126/science.aat808410.1126/science.aat8084.
- Shen Y., Harris N. C., Skirlo S., Prabhu M., Baehr-Jones T., Hochberg M., Sun X., Zhao S., Larochelle H., Englund D., Soljacic M. Deep learning with coherent nanophotonic circuits // Nature Photonics. 2017. Vol. 11. P. 441-446 doi: 10.1038/nphoton.2017.93.
- Tait A. N., De Lima T. F., Zhou E., Wu A. X., Nahmias M. A., Shastri B. J., Prucnal P. R. Neuromorphic photonic networks using silicon photonic weight banks // Sci. Rep. 2017. Vol. 7, no. 1. P. 7430 doi: 10.1038/s41598-017-07754-z.
- Moughames J., Porte X., Thiel M., Ulliac G., Larger L., Jacquot M., Kadic M., Brunner D. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks // Optica. 2020. Vol. 7, no. 6. P. 640-646 doi: 10.1364/OPTICA.388205.
- Dinc N. U., Psaltis D., Brunner D. Optical neural networks: The 3D connection // Photoniques. 2020. Vol. 104. P. 34-38 doi: 10.1051/photon/202010434.
- Moughames J., Porte X., Larger L., Jacquot M., Kadic M., Brunner D. 3D printed multimode-splitters for photonic interconnects // Optical Materials Express. 2020. Vol. 10, no. 11. P. 2952-2961 doi: 10.1364/OME.402974.
- Semenova N., Larger L., Brunner D. Understanding and mitigating noise in trained deep neural networks // Neural Netw. 2022. Vol. 146. P. 151-160 doi: 10.1016/j.neunet.2021.11.008.
- Semenova N. Impact of white Gaussian internal noise on analog echo-state neural networks // arXiv:2405.07670. arXiv Preprint, 2024. 10 p doi: 10.48550/arXiv.2405.07670.
- Semenova N., Brunner D. Noise-mitigation strategies in physical feedforward neural networks // Chaos. 2022. Vol. 32, no. 6. P. 061106 doi: 10.1063/5.0096637.
- Semenova N., Brunner D. Impact of white noise in artificial neural networks trained for classification: Performance and noise mitigation strategies // Chaos. 2024. Vol. 34, no. 5. P. 051101 doi: 10.1063/5.0206807.
- Semenova N., Porte X., Andreoli L., Jacquot M., Larger L., Brunner D. Fundamental aspects of noise in analog-hardware neural networks // Chaos. 2019. Vol. 29, no. 20. P. 103128 doi: 10.1063/1.5120824.
- Li Z., Liu F., Yang W., Peng S., Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects // IEEE Transactions on Neural Networks and Learning Systems. 2022. Vol. 33, no. 12. P. 6999-7019 doi: 10.1109/TNNLS.2021.3084827.
- LeCun Y. The MNIST database of handwritten digits [Electronic resourse] // 1998. Available from: http://yann.lecun.com/exdb/mnist/.
- Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение. М.: ДМК Пресс, 2018. 652 c.
- Chollet F. et a l. Keras [Electronic resource]. 2015. Available from: https://github.com/fchollet/keras.
- Stephanie M. V., Pham L., Schindler A., Grasser T., Waltl M., Schrenk B. Photonic neuron with on frequency-domain ReLU activation function // Journal of Lightwave Technology. 2024. Vol. 42, no. 22. P. 7919-7928 doi: 10.1109/JLT.2024.3413976.
- Li G. H.,Y., Sekine R., Nehra R., Gray R. M., Ledezma L., Guo Q., Marandi A. All-optical ultrafast ReLU function for energy-efficient nanophotonic deep learning // Nanophotonics. 2023. Vol. 12, no. 5. P. 847-855 doi: 10.1515/nanoph-2022-0137.
Arquivos suplementares

