Spectrum of exchange spin waves in a one-dimensional magnonic crystal with antiferromagnetic ordering

Cover Page

Cite item

Full Text

Abstract

Purpose of the study is to show that the conditions for the propagation of exchanged spin waves (ESWs) in an asymmetric superlattice with antiferromagnetically ordered cells depend significantly on the chirality of the precession of the ESW magnetization (polarization, “magnon pseudospin”). Method. When constructing the EWS spectra, the Croning– Penny model (transfer-matrix method) and the Landau–Lifshitz equation are used to determine the nature of the waves in the cells. In the case of a uniaxial medium, there is only one type of ESW, therefore, when fields are joined at the boundary, the conservation of chirality is an essential factor due to which the ESW in one cell is always traveling, and in the other — evanescent. Thus, a superlattice for ESW is an effective periodic “potential” in which asymmetry can be realized either by applying an external field, or by a difference in the thickness and/or physical properties of the cell materials. Results. Based on the analysis of the spectrum, maps of the transmission zones for ESW of different chirality were constructed in three representations — “Bloch wave number – frequency”, “frequency – relative cell thickness”, as well as in the plane of cell wave numbers. It is shown that the presence of asymmetry leads to a difference in the width of the transmission zones for waves of different chirality. For a finite structure, the frequency dependences of the transmission and reflection coefficients of the ESW are plotted. An increase in the attenuation of the ESW near the boundaries of the transmission zones was also found. Conclusion. The results of the study can be used in the design of magnon valves and other devices based on ESW, in which their chirality can be controlled.

About the authors

Vladislav Dmitrievich Poimanov

Donetsk National University

Ukraine, Donetsk, st. University, 24 Ukraine, Vinnitsa, st. 600th anniversary, 21

References

  1. Demokritov S. O. Spin Wave Confinement: Propagating Waves. 2nd edition. Singapore: Pan Stanford Publishing, 2017. 448 p.
  2. Poimanov V. D., Kruglyak V. V. Chirality of exchange spin waves exposed: Scattering and emission from interfaces between antiferromagnetically coupled ferromagnets // J. Appl. Phys. 2021. Vol. 130, no. 13. P. 133902. doi: 10.1063/5.0063727.
  3. Пойманов В. Д., Шавров В. Г., Кругляк В. В. Неоднородные обменные спиновые волны в задачах рассеяния // Журнал Радиоэлектроники. 2018. № 11. С. 7. doi: 10.30898/1684- 1719.2018.11.17.
  4. Poimanov V. D., Shavrov V. G. Features of the scattering of exchange spin waves by layer and superlattice of biaxial ferromagnets // J. Phys. Conf. Ser. 2019. Vol. 1389. P. 012134. doi: 10.1088/1742-6596/1389/1/012134.
  5. Whitehead N. J., Horsley S. A. R., Philbin T. G., Kuchko A. N., Kruglyak V. V. Theory of linear spin wave emission from a Bloch domain wall // Phys. Rev. B. 2017. Vol. 96, no. 6. P. 064415. doi: 10.1103/PhysRevB.96.064415.
  6. Yan Z. R., Xing Y. W., Han X. F. Magnonic skin effect and magnon valve effect in an antiferromagnetically coupled heterojunction // Phys. Rev. B. 2021. Vol. 104, no. 2. P. L020413. DOI: 10.1103/ PhysRevB.104.L020413.
  7. Xing Y. W., Yan Z. R., Han X. F. Comparison of spin-wave transmission in parallel and antiparallel magnetic configurations // Phys. Rev. B. 2022. Vol. 105, no. 6. P. 064427. DOI: 10.1103/ PhysRevB.105.064427.
  8. Саланский Н. М., Ерухимов М.Ш. Физические свойства и применение тонких пленок. Новосибирск: Наука, 1975. 222 с.
  9. Goedsche F. Reflection and refraction of spin waves // Physica Status Solidi (B). 1970. Vol. 39, no. 1. P. K29-K33. doi: 10.1002/pssb.19700390143.
  10. Горобец Ю. И., Решетняк С. А. Отражение и преломление спиновых волн в одноосных магнетиках в приближении геометрической оптики // ЖТФ. 1998. Т. 68, № 2. С. 60-63.
  11. Басс Ф. Г., Булгаков А. А., Тетервов А. П. Высокочастотные свойства полупроводников со сверхрешетками. М.: Наука, 1989. 288 с.
  12. Kruglyak V. V., Kuchko A. N. Spectrum of spin waves propagating in a periodic magnetic structure // Physica B: Condensed Matter. 2003. Vol. 339, no. 2-3. P. 130-133. doi: 10.1016/j.physb. 2003.08.124.
  13. Kruglyak V. V., Davies C. S., Tkachenko V. S., Gorobets O. Y., Gorobets Y. I., Kuchko A. N. Formation of the band spectrum of spin waves in 1D magnonic crystals with different types of interfacial boundary conditions // Journal of Physics D: Applied Physics. 2017. Vol. 50, no. 9. P. 094003. doi: 10.1088/1361-6463/aa536c.
  14. Кругляк В. В., Кучко А. Н. Влияние модуляции магнитной вязкости на затухание спиновых волн в мультислойных магнитных системах // Физика металлов и металловедение. 2001. Т. 92, № 3. С. 3-6.
  15. Kruglyak V. V., Kuchko A. N. Damping of spin waves in a real magnonic crystal // J. Magn. Magn. Mater. 2004. Vol. 272-276, no. 1. P. 302-303. doi: 10.1016/j.jmmm.2003.12.1246.
  16. Latcham O. S., Gusieva Y. I., Shytov A. V., Gorobets O. Y., Kruglyak V. V. Hybrid magnetoacoustic metamaterials for ultrasound control // Appl. Phys. Lett. 2020. Vol. 117, no. 10. P. 102402. doi: 10.1063/5.0018801.
  17. Vysotskii S., Dudko G., Sakharov V., Khivintsev Y., Filimonov Y., Novitskii N., Stognij A., Nikitov S. Propagation of spin waves in ferrite films with metasurface // ACTA PHYSICA POLONICA A. 2018. Vol. 133, no. 3. P. 508-510. doi: 10.12693/aphyspola.133.508.
  18. Вашковский А. В., Стальмахов В. С., Шараевский Ю. П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Издательство Саратовского университета, 1993. 312 с.
  19. Пойманов В. Д., Кругляк В. В. Невзаимность распространения обменно-дипольных спиновых волн в двуслойных магнитных пленках со скрещенной намагниченностью слоев // ЖЭТФ. 2022. Т. 161, № 5. С. 720-736. doi: 10.31857/S0044451022050108.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies