Tunable spin-wave delay line based on ferrite and vanadium dioxide

Cover Page

Cite item

Full Text

Abstract

One of the key elements for modern microwave circuits is a delay line, which is widely utilized for the signal generation as well as processing. Spin-wave delay lines based on ferrite films provide a high delay time and small dimensions. Typically, the performance characteristics of such lines are tuned by the variation of an externally applied magnetic field characterized by some drawbacks. The phenomenon of a metal–insulator transition (MIT) in the phase change materials permits to improve the performance characteristics of the spin-wave delay lines. In particular, this concept allows to reduce the power consumption and improve the control speed of a delay time. Aim. Development of a tunable spin-wave delay line based on ferrite and vanadium dioxide films, as well as the study of its performance characteristics. Methods. Experimental investigations were carried out for the delay line composed of the yttrium iron garnet (YIG) and vanadium dioxide (VO2) films. The ferrite waveguide was fabricated from a single-crystal YIG film grown on a gallium gadolinium garnet substrate. A vanadium dioxide film was formed on a silicon dioxide substrate by DC reactive magnetron sputtering. The microwave measurements were carried out using the vector network analyzer R&S®R ZVA40. Results. It was shown that heating of the VO2 film induces a sufficient drop of its resistance that causes the transformation of the spin-wave dispersion characteristic. This leads to the decrease in the group velocity of the propagating waves providing a growth of a delay time. Namely, experimental structure of 5-mm length offers a tunable time delay range from 130 up to 150 ns at the operating frequency of 4.33 GHz. Conclusion. A proof-of-principle for the MIT control of the delay time composed on the YIG-VO2 structure has been presented. It was shown that a switch of VO2 film from the isolating into conducting state produces a 15% change in the delay time. The considered microwave delay lines look favorable for applications as a complimentary part to the traditional approach for general computing and microwave signal processing. 

About the authors

Aleksei Aleksandrovich Nikitin

Sankt-Peterburg Electrotechnical University "LETI"

ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Andrey Evgen'evich Komlev

Sankt-Peterburg Electrotechnical University "LETI"

ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Andrey A. Nikitin

Sankt-Peterburg Electrotechnical University "LETI"

ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Aleksej Borisovich Ustinov

Sankt-Peterburg Electrotechnical University "LETI"

ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

References

  1. Shahoei H., Yao J. Delay lines // In: Wiley Encyclopedia of Electrical and Electronics Engineering. Hoboken, New Jersey: Wiley, 2014. P. 1-15. doi: 10.1002/047134608X.W8234.
  2. Ishak W. S. Magnetostatic wave technology: a review // Proc. IEEE. 1988. Vol. 76, no. 2. P. 171- 187. doi: 10.1109/5.4393.
  3. d’Allivy Kelly O., Anane A., Bernard R., Ben Youssef J., Hahn C., Molpeceres A. H., Carret´ ero C., Jacquet E., Deranlot C., Bortolotti P., Lebourgeois R., Mage J.-C., de Loubens G., Klein O., Cros V., Fert A. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system // Appl. Phys. Lett. 2013. Vol. 103, no. 8. P. 082408. doi: 10.1063/1.4819157.
  4. Costa J. D., Figeys B., Sun X., Van Hoovels N., Tilmans H. A., Ciubotaru F., Adelmann C. Compact tunable YIG-based RF resonators // Appl. Phys. Lett. 2021. Vol. 118, no. 16. P. 162406. doi: 10.1063/5.0044993.
  5. Lammel M., Scheffler D., Pohl D., Swekis P., Reitzig S., Piontek S., Reichlova H., Schlitz R., Geishendorf K., Siegl L., Rellinghaus B., Eng L. M., Nielsch K., Goennenwein S. T. B., Thomas A. Atomic layer deposition of yttrium iron garnet thin films // Phys. Rev. Mater. 2022. Vol. 6, no. 4. P. 044411. doi: 10.1103/PhysRevMaterials.6.044411.
  6. Adam J. D. Analog signal processing with microwave magnetics // Proc. IEEE. 1988. Vol. 76, no. 2. P. 159-170. doi: 10.1109/5.4392.
  7. Adam J. D., Daniel M. R., Okeeffe T. W. Magnetostatic wave devices // Microw. J. 1982. Vol. 25. P. 95-99.
  8. Chang K. W., Owens J. M., Carter R. L. Linearly dispersive time-delay control of magnetostatic surface wave by variable ground-plane spacing // Electron. Lett. 1983. Vol. 19, no. 14. P. 546-547. doi: 10.1049/el:19830370.
  9. Ustinov A. B., Demidov V. E., Kalinikos B. A. Electronically tunable nondispersive magnetostatic wave delay line // Electron. Lett. 2001. Vol. 37, no. 19. P. 1161-1162. doi: 10.1049/el:20010809.
  10. Высоцкий С. Л., Казаков Г. Т., Кожевников А. В., Никитов С. А., Романов А. В., Филимонов Ю. А. Бездисперсионная линия задержки на магнитостатических волнах // Письма в ЖТФ. 2006. Т. 32, № 15. С. 45-50.
  11. Kabos P., Stalmachov V. S. Magnetostatic Waves and Their Application. Dordrecht: Springer, 1994. 303 p. doi: 10.1007/978-94-011-1246-8.
  12. Веселов А. Г., Высоцкий С. Л., Казаков Г. Т., Сухарев А. Г., Филимонов Ю. А. Поверхностные магнитостатические волны в металлизированных пленках ЖИГ // Радиотехника и электроника. 1994. Т. 39, № 12. С. 2067-2074.
  13. Vopson M. M. Fundamentals of multiferroic materials and their possible applications // Crit. Rev. Solid State Mater. Sci. 2015. Vol. 40, no. 4. P. 223-250. doi: 10.1080/10408436.2014.992584.
  14. Palneedi H., Annapureddy V., Priya S., Ryu J. Status and perspectives of multiferroic magnetoelectric composite materials and applications // Actuators. 2016. Vol. 5, no. 1. P. 9. DOI: 10.3390/ act5010009.
  15. Ustinov A.B., Drozdovskii A.V., Nikitin A.A., Semenov A.A., Bozhko D.A., Serga A. A., Hillebrands B., Lahderanta E., Kalinikos B. A. Dynamic electromagnonic crystal based on artificial multiferroic heterostructure // Commun. Phys. 2019. Vol. 2, no. 1. P. 137. doi: 10.1038/s42005-019-0240-7.
  16. Fetisov Y. K., Srinivasan G. Electrically tunable ferrite-ferroelectric microwave delay lines // Appl. Phys. Lett. 2005. Vol. 87, no. 10. P. 103502. doi: 10.1063/1.2037860.
  17. Shi R., Shen N., Wang J., Wang W., Amini A., Wang N., Cheng C. Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide // Appl. Phys. Rev. 2019. Vol. 6, no. 1. P. 011312. doi: 10.1063/1.5087864.
  18. Ruzmetov D., Gopalakrishnan G., Ko C., Narayanamurti V., Ramanathan S. Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer // J. Appl. Phys. 2010. Vol. 107, no. 11. P. 114516. doi: 10.1063/1.3408899.
  19. Zhou Y., Ramanathan S. Mott memory and neuromorphic devices // Proc. IEEE. 2015. Vol. 103, no. 8. P. 1289-1310. doi: 10.1109/JPROC.2015.2431914.
  20. Safi T. S., Zhang P., Fan Y., Guo Z., Han J., Rosenberg E. R., Ross C., Tserkovnyak Y., Liu L. Variable spin-charge conversion across metal-insulator transition // Nat. Commun. 2020. Vol. 11, no. 1. P. 476. doi: 10.1038/s41467-020-14388-9.
  21. Morin F. J. Oxides which show a metal-to-insulator transition at the Neel temperature // Phys. Rev. Lett. 1959. Vol. 3, no. 1. P. 34-36. doi: 10.1103/PhysRevLett.3.34.
  22. Andreeva N. V., Turalchuk P. A., Chigirev D. A., Vendik I. B., Ryndin E. A., Luchinin V. V. Electron impact processes in voltage-controlled phase transition in vanadium dioxide thin films // Chaos, Solitons & Fractals. 2021. Vol. 142. P. 110503. doi: 10.1016/j.chaos.2020.110503.
  23. Cavalleri A., Toth C., Siders C. W., Squier J. A., Raksi F., Forget P., Kieffer J. C. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition // Phys. Rev. Lett. 2001. Vol. 87, no. 23. P. 237401. doi: 10.1103/PhysRevLett.87.237401.
  24. Kikuzuki T., Lippmaa M. Characterizing a strain-driven phase transition in VO2 // Appl. Phys. Lett. 2010. Vol. 96, no. 13. P. 132107. doi: 10.1063/1.3380599.
  25. Nikitin A. A., Vitko V. V., Nikitin A. A., Ustinov A. B., Karzin V. V., Komlev A. E., Kalinikos B. A., Lahderanta E. Spin-wave phase shifters utilizing metal-insulator transition // IEEE Magn. Lett. 2018. Vol. 9. P. 3706905. doi: 10.1109/LMAG.2018.2874172.
  26. Nikitin A. A., Vitko V. V., Nikitin A. A., Ustinov A. B., Kalinikos B. A. Microwave tunable devices on the YIG-VO2 structures // J. Phys. Conf. Ser. 2019. Vol. 1400, no. 4. P. 044001. doi: 10.1088/1742- 6596/1400/4/044001.
  27. Nikitin A. A., Nikitin A. A., Ustinov A. B., Komlev A. E., Lahderanta E., Kalinikos B. A. Metal- insulator switching of vanadium dioxide for controlling spin-wave dynamics in magnonic crystals // J. Appl. Phys. 2020. Vol. 128, no. 18. P. 183902. doi: 10.1063/5.0027792.
  28. Cueff S., John J., Zhang Z., Parra J., Sun J., Orobtchouk R., Ramanathan S., Sanchis P. VO2 nanophotonics // APL Photonics. 2020. Vol. 5, no. 11. P. 110901. doi: 10.1063/5.0028093.
  29. Watt S., Kostylev M., Ustinov A. B., Kalinikos B. A. Implementing a magnonic reservoir computer model based on time-delay multiplexing // Phys. Rev. Appl. 2021. Vol. 15, no. 6. P. 064060. doi: 10.1103/PhysRevApplied.15.064060.
  30. Nikitin A. A., Nikitin A. A., Ustinov A. B., Watt S., Kostylev M. P. Theoretical model for nonlinear spin-wave transient processes in active-ring oscillators with variable gain and its application for magnonic reservoir computing // J. Appl. Phys. 2022. Vol. 131, no. 11. P. 113903. 10.1063/ 5.0081142.
  31. Chumak A. V., Kabos P., Wu M. etal. Advances in magnetics roadmap on spin-wave computing // IEEE Trans. Magn. 2022. Vol. 58, no. 6. P. 0800172. doi: 10.1109/TMAG.2022.3149664.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies