Magnetoimpedance modulation in a planar magnetoelectric ferromagnet - piezoelectric heterostructure

Cover Page

Cite item

Full Text

Abstract

The effect of a giant change in the impedance of ferromagnetic materials under the action of an external magnetic field is widely used to elaborate highly sensitive magnetic field sensors. The purpose of this work was to demonstrate the possibilities of controlling the magnitude of the magnetoimpedance in a ferromagnet-piezoelectric structure using an electric field. Method. In the measurements, we used a planar heterostructure containing a strip of amorphous ferromagnet Metglas, 25 µm thick and 25 mm long, mechanically connected to a bimorph, 0.5 mm thick and 30 mm long, made of piezoceramic lead zirconate titanate. An alternating current with a frequency of 30 kHz...10 MHz was passed through the strip, the structure was placed in a longitudinal permanent magnetic field of 0...500 Oe, an alternating electric field up to 400 V/cm with a frequency of 60 Hz...50 kHz was applied to the piezobimorph, and the change in the impedance of the strip was recorded. Results. In the absence of electric field, a narrowing of the magnetoimpedance magnetic fields region with a decrease in the current frequency and saturation of the magnetoimpedance in magnetic fields above 334 Oe were observed. The maximum value of the magnetoimpedance reached 18% at a current frequency of 1 MHz. The application of electric field to the piezobimorph led to the appearance of side components in the frequency spectrum of the voltage on the ferromagnetic layer, which indicates the amplitude-phase modulation of the magnetoimpedance. The amplitude modulation coefficient reached a maximum value of 6 · 10−3 for the electric field frequency of 11.2 kHz and decreased monotonically with an increase in the magnetic field. The modulation of the magnetoimpedance occurs due to the converse magnetoelectric effect in the heterostructure, which leads to the modulation of the magnetization of the ferromagnetic layer, and the subsequent change in the relative magnetic permeability and thickness of the skin layer in the ferromagnet. The results obtained can be used to create magnetic fields sensors controlled by an electric field.

About the authors

Dmitry Alekseevich Burdin

Federal State Budget Educational Institution of Higher Education «MIREA - Russian Technological University»

78, Vernadsky Ave., Moscow, 119454

Dmitry Vladimirovich Chashin

Federal State Budget Educational Institution of Higher Education «MIREA - Russian Technological University»

78, Vernadsky Ave., Moscow, 119454

Nikolay Andreevich Ekonomov

Federal State Budget Educational Institution of Higher Education «MIREA - Russian Technological University»

78, Vernadsky Ave., Moscow, 119454

Yuri K. Fetisov

Federal State Budget Educational Institution of Higher Education «MIREA - Russian Technological University»

78, Vernadsky Ave., Moscow, 119454

References

  1. Knobel M., Pirota K. R. Giant magnetoimpedance: concepts and recent progress // J. Magn. Magn. Mater. 2002. Vol. 242-245, no. 1. P. 33-40. doi: 10.1016/S0304-8853(01)01180-5.
  2. Panina L. V., Mohri K. Magneto-impedance effect in amorphous wires // Appl. Phys. Lett. 1994. Vol. 65, no. 9. P. 1189-1191. doi: 10.1063/1.112104.
  3. Panina L. V., Mohri K., Uchiyama T., Noda M., Bushida K. Giant magneto-impedance in Corich amorphous wires and films // IEEE Trans. Magn. 1995. Vol. 31, no. 2. P. 1249-1260. doi: 10.1109/20.364815.
  4. Phan M.-H., Peng H.-X. Giant magnetoimpedance materials: Fundamentals and applications // Progress in Materials Science. 2008. Vol. 53, no. 2. P. 323-420. doi: 10.1016/j.pmatsci.2007.05.003.
  5. Shen L. P., Uchiyama T., Mohri K., Kita E., Bushida K. Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire // IEEE Trans. Magn. 1997. Vol. 33, no. 5. P. 3355-3357. doi: 10.1109/20.617942.
  6. Gazda P., Nowicki M., Szewczyk R. Comparison of stress-impedance effect in amorphous ribbons with positive and negative magnetostriction // Materials. 2019. Vol. 12, no. 2. P. 275. doi: 10.3390/ma12020275.
  7. Nan C.-W., Bichurin M. I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions // J. Appl. Phys. 2008. Vol. 103, no. 3. P. 031101. doi: 10.1063/1.2836410.
  8. Wang W., Wang Z., Luo X., Tao J., Zhang N., Xu X., Zhou L. Capacitive type magnetoimpedance effect in piezoelectric-magnetostrictive composite resonator // Appl. Phys. Lett. 2015. Vol. 107, no. 17. P. 172904. doi: 10.1063/1.4934821.
  9. Leung C. M., Zhuang X., Xu J., Li J., Zhang J., Srinivasan G., Viehland D. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites // AIP Advances. 2018. Vol. 8, no. 5. P. 055803. doi: 10.1063/1.5006203.
  10. Chen L., Wang Y., Luo T., Zou Y., Wan Z. The study of magnetoimpedance effect for magnetoelectric laminate composites with different magnetostrictive layers // Materials. 2021. Vol. 14, no. 21. P. 6397. doi: 10.3390/ma14216397.
  11. Amalou F., Gijs M. A. M. Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons // Appl. Phys. Lett. 2002. Vol. 81, no. 9. P. 1654-1656. doi: 10.1063/1.1499769.
  12. Fetisov L. Y., Chashin D. V., Burdin D. A., Saveliev D. V., Ekonomov N. A., Srinivasan G., Fetisov Y. K. Nonlinear converse magnetoelectric effects in a ferromagnetic-piezoelectric bilayer // Appl. Phys. Lett. 2018. Vol. 113, no. 21. P. 212903. doi: 10.1063/1.5054584.
  13. Гоноровский И. С. Радиотехнические цепи и сигналы. Москва: Радио и связь, 1986. 512 с.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies