Effective algorithms for solving functional equations with superposition on the example of the Feigenbaum equation

Cover Page

Cite item

Full Text

Abstract

Purpose. New algorithms were consider for functional equations solving using the Feigenbaum equation as an example. This equation is of great interest in the theory of deterministic chaos and is a good illustrative example in the class of functional equations with superposition. Methods. The article proposes three new effective methods for solving functional equations — the method of successive approximations, the method of successive approximations using the fast Fourier transform and the numerical-analytical method using a small parameter. Results. Three new methods for solving functional equations were presented, considered on the example of the Feigenbaum equation. For each of them, the features of their application were investigated, as well as the complexity of the resulting algorithms was estimated. The methods previously used by researchers to solve functional equations are compared with those described in this article. In the description of the latter, the numerical-analytical method, several coefficients of expansions of the universal Feigenbaum constants were written out. Conclusion. The obtained algorithms, based on simple iteration methods, allow solving functional equations with superposition without the need to reverse the Jacobi matrix. This feature greatly simplifies the use of computer memory and gives a gain in the operating time of the algorithms in question, compared with previously used ones. Also, the latter, numerically-analytical method made it possible to obtain sequentially the coefficients of expansions of the universal Feigenbaum constants, which in fact can be an analytical representation of these constants

About the authors

Andrey Andreevich Polunovskii

A. A. Harkevich Institute of Information Transmission Problems of the RAS; Kurchatov Institute

Bolshoy Karetny per. 19, build.1, Moscow

References

  1. Шустер Г. Детерминированный хаос. М.: Мир, 1988. 253 c.
  2. Фейгенбаум М. Универсальность в поведении нелинейных систем // Успехи физических наук. 1983. Т. 141, № 2. С. 343–374. doi: 10.3367/UFNr.0141.198310e.0343.
  3. Feigcnbaum M. J. The universal metric properties of nonlinear transformations // Journal of Statistical Physics. 1979. Vol. 21, no. 6. P. 669–706. doi: 10.1007/BF01107909.
  4. Feigenbaum M. J. Quantitative universality for a class of nonlinear transformations // Journal of Statistical Physics. 1978. Vol. 19, no. 1. P. 25–52. doi: 10.1007/BF01020332.
  5. Briggs K. How to calculate the Feigenbaum constants on your PC // Australian Mathematical Society Gazette. 1989. Vol. 16. P. 89–92.
  6. Broadhurst D. Feigenbaum constants to 1018 decimal places [Electronic resource]. 22 March 1999. Available from: http://www.plouffe.fr/simon/constants/feigenbaum.txt.
  7. Briggs K. A precise calculation of the Feigenbaum constants // Mathematics of Computation. 1991. Vol. 57, no. 195. P. 435–439. doi: 10.2307/2938684.
  8. Molteni A. An efficient method for the computation of the Feigenbaum constants to high precision [Electronic resource] // arXiv:1602.02357. arXiv Preprint, 2016. Available from: https://arxiv.org/ abs/1602.02357.
  9. Кузнецов C. Динамический хаос. 2-е изд. М.: Физматлит, 2006. 356 с.
  10. Faa di Bruno F. Sullo sviluppo delle funzioni // Annali di Scienze Matematiche e Fisiche. 1855. Vol. 6. P. 479–480.
  11. Bell E. T. Partition polynomials // Annals of Mathematics. 1927. Vol. 29, no. 1–4. P. 38–46. doi: 10.2307/1967979.
  12. Heideman M. T., Johnson D., Burrus C. Gauss and the history of the fast Fourier transform // IEEE ASSP Magazine. 1984. Vol. 1, no. 4. P. 14–21. doi: 10.1109/MASSP.1984.1162257.
  13. Полуновский А. А. Временные разложения решений уравнений математической физики // Дифференциальные уравнения. 2020. Т. 56, № 3. С. 393–402. doi: 10.1134/S0374064120030103.
  14. Ван-Дайк М. Методы возмущений в механике жидкости. М.: Мир, 1967. 296 с.
  15. Бейкер Дж., Грейвс-Моррис П. Аппроксимации Паде. М: Мир, 1986. 502 с.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies