Experimental research and modeling of rain floods in urbanized territories of the Moscow region (on the example of the Setun river)

Cover Page

Cite item

Full Text

Abstract

The Moscow agglomeration has a high proportion of impermeable surfaces, which leads to a specific water regime characterized by frequent short-term floods due to the rapid response of the catchment area to precipitation. For one of the largest tributaries of the Moskva River in the capital, the Setun River, the SWMM model was able to reproduce the passage of extreme flood events in 2020–2023. The model was calibrated using 30-minute monitoring data on water discharge and 10-minute precipitation rates obtained by interpolating to the center of the catchment. The performance of the model was assessed using relative error (RE) and coefficient of determination (R2). The calibration and verification results showed a good correlation between the modeled and measured maximum water discharges (R2 = 0.77) with relative errors ranging from 2 to 56%. The most accurate results were obtained for flood events with peak flow rates exceeding 15 m3/s.

About the authors

I. S. Denisova

Water Problems Institute of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: ira.denisova@icloud.com
Moscow, Russia; Moscow, Russia

M. V. Bolgov

Water Problems Institute of the Russian Academy of Sciences

Moscow, Russia

References

  1. Befani N.F. Prognozirovanie dozhdevyh pavodkov na osnove territorial’no obshhih zavisimostej. L.: Gidrometeoizdat, 1977. 184 s.
  2. Bolgov M.V., Aref’eva E.V., Zav’yalova E.V. Voprosy’ modelirovaniya i prognozirovaniya zatopleniya gorodskix territorij na osnove ispol’zovaniya special’ny’x programmny’x kompleksov i danny’x distancionny’x izmerenij meteorologicheskix xarakteristik // Nauchny’e i obrazovatel’ny’e problemy’ grazhdanskoj zashhity’. 2020. № 3 (46). S. 19–29.
  3. Bolgov M.V., Zajceva A.V., Zav’yalova E.V. Ocenka diffuznogo stoka s territorii g. Rostov na osnove metodov matematicheskogo modelirovaniya // Sb. dokl. mezhdunarodnoj nauchnoj konferencii pamjati vydajushhegosja russkogo uchenogo Jurija Borisovicha Vinogradova “Chetverty’e Vinogradovskie Chteniya. Gidrologiya: ot poznaniya k mirovozzreniyu” / Pod red. O.M. Makar’evoj, A.A. Zemljanskovoj. SPb.: Izd-vo VVM, 2020. S. 41–47.
  4. Borshh S.V., Xristoforov A.V., Yumina N.M. Statisticheskij analiz v gidrologicheskix prognozax. M.: Gidrometcentr Rossii, 2018. 160 s.
  5. Brusova N.E., Kuzneczova I.N., Naxaev M.I. Osobennosti rezhima osadkov v Moskovskom regione v 2008–2017 gg. // Gidrometeorologicheskie issledovaniya i prognozy’. 2019. № 1. S. 127–172.
  6. Gandin L.S., Kagan. R.L. Statisticheskie metody` interpretacii meteorologicheskix danny`x. L.: Gidrometeoizdat, 1976. 359 s.
  7. Klimat Moskvy’ (Osobennosti klimata bol’shogo goroda) / Pod red. A.A. Dmitrieva, N.P. Bessonova. L.: Gidrometeoizdat, 1969. 320 s.
  8. Sokolov D., Chalov S., Tereshina M., Erina O., Shinkareva G. Osobennosti gidrologicheskogo rezhima urbanizirovannoj reki Setun’ // Sovremenny’e problemy’ vodoxranilishh i ix vodosborov: tr. VIII Vserossijskoj nauchno-prakticheskoj konferencii s mezhdunarodny’m uchastiem, Perm’, 27–30 maya 2021 goda. Perm’: Permskij gosudarstvenny’j nacional’ny’j issledovatel’skij universitet, 2021. T. 834. S. 180–185. https://doi.org/10.1088/1755-1315/834/1/012024
  9. Stulov E.A. Vliyanie goroda Moskvy’ na usilenie letnix osadkov // Meteorologiya i gidrologiya. 1993. Vyp. 11. S. 34–41.
  10. Terskij P., Cy’plenkov A., Morejdo V., Samoxin M., Sokolov D. Vosstanovlenie ryadov stoka vody’ maloizuchennoj gorodskoj reki Setun’ (g. Moskva) na osnove danny’x naturny’x nablyudenij i gidrologicheskogo modelirovaniya // Materialy mezhdunarodnogo simpoziuma “Inzhenernaja jekologija — 2023”, Moskva, 05–07 dekabrya 2023 g. / Pod red. F.A. Mkrtchjana. M.: RNTORЕS im. A.S. Popova, 2023. S. 142–146.
  11. Cy’plenkov A.S., Cherniczova O.V., Kosheleva N.E., Chalov S.R. GIS-modelirovanie balansa nanosov i zagryaznyayushhix veshhestv v bassejne R. Setun’ (Moskva) // Inzhenernaya e’kologiya — 2021: Doklady’ mezhdunarodnogo simpoziuma, Moskva, 1–3 dekabrja 2021 g. / Pod red. F.A. Mkrtchjana. M.: RNTORJeS im. A.S. Popova,2021. S. 172–176.
  12. Yary’nich YU.I., Varenczov M.I., Platonov V.S., Stepanenko V.M., Chernokul’skij A.V., Davletshin S.G., Dronova E.A. Vliyanie moskovskogo megapolisa na osadki teplogo perioda v zavisimosti ot krupnomasshtabny’x atmosferny’x uslovij // Vodnye resursy. 2023. T. 50. № 5. S. 550–560.
  13. Chow M.F., Yusop Z., Toriman M.E. Modelling runoff quantity and quality in tropical urban catchments using Storm Water Management Model // International Journal of Environmental Science and Technology. 2012. V. 9. № 4. P. 737–748. https://doi.org/10.1007/s13762-012-0092-0
  14. Gerasimova M.I., Chernitsova O.V., Vasil’chuk J.Y., Kosheleva N.E. GIS mapping of the soil cover of an urbanized territory: drainage basin of the Setun river in the west of Moscow (Russian Federation) // Geography, Environment, Sustainability. 2024. V. 17. № 2. P. 131–138. https://doi.org/10.24057/2071-9388-2024-3136
  15. Hung C.L.J., James L.A., Carbone G.J., Williams J.M. Impacts of combined land-use and climate change on streamflow in two nested catchments in the Southeastern United States // Ecological Engineering. 2020. V. 143. 105665. https://doi.org/10.1016/j.ecoleng.2019.105665
  16. Kong D., McVicar T.R., Xiao M., Zhang Y., Peña-Arancibia J.L., Filippa G., Xie Y., Gu X. phenofit: An R package for extracting vegetation phenology from time series remote sensing // Methods in Ecology and Evolution. 2022. V. 13. № 7. P. 1508–1527. https://doi.org/10.1111/2041-210X.13870
  17. Li C., Liu M., Hu Y., Gong J., Xu Y. Modeling the quality and quantity of runoff in a highly urbanized catchment using storm water management model // Polish Journal of Environmental Studies. 2016. V. 25. № 4. P. 1573–1581. https://doi.org/10.15244/pjoes/60721
  18. Rhugwasanye C., Agarwal S., Chappidi H.R., Kottapalli R.L. Bujumbura urban flood simulation based on SWMM model // AIP Conference Proceedings. 2023. V. 2707. 040013. https://doi.org/10.1063/5.0143108
  19. Rossman L., Simon M. Storm Water Management Model User’s Manual Version 5.2. Cincinnati: Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, 2022. 424 p.
  20. Savitzky A., Golay M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures // Analytical Chemistry. 1964. V. 36. № 8. P. 1627–1639. https://doi.org/10.1021/ac60214a047
  21. Skougaard Kaspersen P., Høegh Ravn N., Arnbjerg-Nielsen K., Madsen H., Drews M. Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding // Hydrology and Earth System Sciences. 2017. V. 21. № 8. P. 4131–4147. https://doi.org/10.5194/hess-21-4131-2017
  22. Sokolov D., Chalov S., Tereshina M., Erina O., Shinkareva G. Hydrological regime of the urban Setun River // IOP Conference Series: Earth and Environmental Science. 2021. V. 834. 012024. https://doi.org/10.1088/1755-1315/834/1/012024
  23. Sokolov D.I., Erina O.N., Tereshina M.A., Puklakov V.V. Impact Of Mozhaysk Dam On The Moscow River Sediment Transport // Geography, Environment, Sustainability. 2020. V. 13. № 4. P. 24–31. https://doi.org/10.24057/2071-9388-2019-150
  24. Tereshina M., Erina O., Sokolov D., Efimova L., Kasimov N. Nutrient dynamics along the Moskva River under heavy pollution and limited self-purification capacity // E3S Web of Conferences. 2020. V. 163. 05014. https://doi.org/10.1051/e3sconf/202016305014
  25. Varentsov M., Wouters H., Platonov V., Konstantinov P. Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia // Atmosphere. 2018. V. 9. № 2. 50. https://doi.org/10.3390/atmos9020050

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».