Spatial and Temporal Variability of the Thermal Comfort Conditions in Kazakhstan

Cover Page

Cite item

Full Text

Abstract

The investigation of cold stress conditions in Kazakhstan is motivated by the lack of generalized studies of thermal comfort for the country, the high social and economic consequences of extreme cold conditions for the region and the observed significant trends in air temperature and precipitation in the region. Basing on 3-hour data for 13 cities of Kazakhstan the seasonal cycle and spatial distribution of thermal comfort over the territory of Kazakhstan were analyzed. The wind-chill index (WCI) was used to assess cold stress, and the physiologically equivalent temperature (PET) was used for the warm period. It was shown that the coldest region of Kazakhstan is the North with the maximum amount of days with cold stress conditions in Astana and Petropavlovsk. The maximum number of days with cold stress occurs in January and February, the minimum is in March, and in October cold stress is not recorded on the territory of the Republic. High heat stress was recorded in all regions of Kazakhstan during all 6 months of the warm half-year. The maximum repeatability of high heat stress (PET index exceeding +35°C) is documented in Almaty and Shymkent. The spatial distribution of thermal comfort is governed mainly by atmosphere circulation in winter and radiation conditions in summer, which is characteristic of continental climate. The interannual variability of cold stress conditions has no pronounced trend and is irregular due to the specific of synoptic processes in a particular year. During the warm period in most cities, the number of days with high thermal stress increases toward the end of the period in accordance with the positive temperature trend.

It was revealed that the most thermally comfortable cities in Kazakhstan are Kokshetau and Kostanay, the most thermally uncomfortable ones are Almaty and Shymkent. It is shown that despite the fact that Kazakhstan is traditionally considered as a country with severe winter conditions, the summer period is the dominant factor for the conditions of thermal discomfort in the Republic.

Full Text

Restricted Access

About the authors

Daria Y. Gushchina

Lomonosov Moscow State University

Author for correspondence.
Email: dasha155@mail.ru

Department of Meteorology and Climatology, Faculty of Geography, Professor, doctor of geographical sciences

Russian Federation, Moscow

Zhanel T. Muhtarova

Kazakhstan Branch of Lomonosov Moscow State University

Email: zhanelmkhtrva@gmail.com

Student, Department of Ecology and Nature Management

Kazakhstan, Astana

References

  1. Ageev F. T., Smirnova M. D., Rodnenkov O. V. Heat and cardiovascular system // M.: Praktika, 184 p.
  2. Баранский Н. Н. География СССР: Учебник для средней школы. М.: Учпедгиз, 1933.
  3. Bardin M. Yu., Rankova E. A., Platova T. V., Samokhina O. F., Antipina U. I. Review of the current state and climatic changes in the territory of the Russian Federation // Use and protection of natural resources in Russia. 2020. Vol. 3 (163), pp. 69–77.
  4. Beku B., Nasynbayeva A. S. Assessment of bioclimatic conditions in the south and south-east of Kazakhstan // Hydrometeorology and ecology. 2013. No. 1, pp. 65–72.
  5. Bugaev V. A., Giorgio V. A., Kozik E. M., Petrosyants M. A. et al., Synoptic processes of Central Asia. Tashkent: Ed. Academy of Sciences of the Ukrainian SSR, 1957. 535 p.
  6. Vilesov E. N. Characteristics of the climate of Astana and their changes over the past 90 years. // Hydrometeorology and ecology. 2017, No. 3, pp. 7–16.
  7. Vilfand R. M., Shumerova V. A., Tishchenko V. M., Khan V. M. The main features of large-scale atmospheric circulation in the context of the analysis of the consensus forecast of air temperature and precipitation for the summer of 2020 in the Northern hemisphere // Hydrometeorological studies and forecasts. 2021. No. 1 (379). pp. 20–35
  8. Govorkova V. A., Kattsov V. M. Climate changes in the countries of the “near abroad” of Russia in the 21st century // Proceedings of the Main Geophysical Observatory named after A. I. Voeikov, 2008. No. 558. pp. 64–84.
  9. Kozhakhmetova E. P., Kozhakhmetov P. J. On the change in the temperature regime of Astana and its environs // Hydrometeorology and Ecology. 2014. No. 1, pp. 7–13.
  10. Kosheleva O. Yu., Shinkarenko S. S., Gordienko O. A., Omarov R. S., Dubacheva A. A. Seasonal and long-term features of surface temperature in cities of the arid zone (on the example of cities in the south-east of the European part of Russia and Western Kazakhstan) // Izvestiya NV AUK. 2021. No. 3(63), рp.426–439. https://doi.org/10.32786/2071-9485-2021-03-44
  11. Kuznetsova I. N., Zvyagintsev A. M., Semutnikova E. G. Ecological consequences of weather anomalies in the summer of 2010 // Analysis of abnormal weather conditions in Russia in the summer of 2010: collection of reports of the joint meeting of the Presidium of the Scientific and Technical Council of Roshydromet and the Scientific Council of the Russian Academy of Sciences “Research on the theory of the Earth’s climate” / Ed..P. Shakina. — M.: Roshydromet, RAS, 2011. pp. 59–64.
  12. Myagkov M. S., Gubernsky Yu.D., Konova L. I., Litkevich V. K. City, architecture, man and climate // M.: Architecture, 2007, 344 p.
  13. Weather in Kazakhstan in 5200 points, LLC “Weather schedule”. URL: https://rp5.ru / (Date of reference: 10/21/2021–11/03/2021).
  14. Revich B. A., Shaposhnikov D. A. Features of the impact of cold and heat waves on mortality in cities with a sharply continental climate //Siberian Medical Review. 2017. № . 2 (104). P. 84–90
  15. Senkova A. D., Indoor microclimate and human health. — T.: TGNU, 2011. pp. 320–323.
  16. Tkachuk S. V. Review of indices of the degree of comfort of weather conditions and their relationship with mortality rates // Proceedings of the Hydrometeorological Center of Russia. 2012. Issue 347. P. 223–245.
  17. Shaposhnikov, D. A. On some approaches to calculating the risks of temperature waves for health / D. A. Shaposhnikov, B. A. Revich// Health risk analysis. 2018, No. 1, pp. 22–31. https://doi.org/10.21668/health.risk/2018.1.03
  18. Shkurinsky B. V. Studying the comfort of weather and climatic conditions of the territory of the Aktobe region // Hydrometeorology and ecology. 2015, No. 4, pp. 17–25.
  19. Berlessova A. A., Konstantinov P. I. Local climate zones in the city of Nur-Sultan (Kazakhstan) and their connections with urban heat island and thermal comfort // IOP Conference Series: Earth and Environmental Science. 2020. Vol. 611.
  20. Błażejczyk K., Jendritzky G., Bröde P., Fiala D., Havenith G., Epstein Y., Psikuta A., Kampmann B. An introduction to the Universal Thermal Climate Index (UTCI) // Geogr Pol 862013.2013. Vol. 1, P. 5–10.
  21. Cianconi P., Betrò S., Janiri L. The Impact of Climate Change on Mental Health: A Systematic Descriptive Review. // Frontiers in psychiatry. 2020, Vol. 11, р. 11–74. https://doi.org/10.3389/fpsyt.2020.00074
  22. Copernicus Climate Change Service. ECMWF: https://cds.climate.copernicus.eu/datasets/ecv-for-climate-change?tab=overview (Date of reference: 07/10/2022–01/02/2023)
  23. Haines A., Kovats R. S., Corvalan C. Climate change and human health: impacts, vulnerability, and public health // Public Health. 2006. Vol. 120 (7), p. 585–596. https://doi.org/10.1016/j.puhe.2006.01.002
  24. Huang B., Peter W. Thorne, Viva F. Banzon, Tim Boyer, Gennady Chepurin, Jay H. Lawrimore, Matthew J. Menne, Thomas M. Smith, Russell S. Vose, and Huai-Min Zhang (2017): NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. [indicate subset used]. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5T72FNM
  25. Konstantinov P. I., Varentsov M. I. and Shartova N. V. (2022): North Eurasian thermal comfort indices dataset (NETCID): new gridded database for the biometeorological studies // Environ. Res. Lett. 17 085006. https://doi.org/10.1088/1748-9326/ac7fa9
  26. Matzarakis A, Wetterdienst D, Rutz F, Matzarakis A and Rutz F 2007 Rayman: a tool for tourism and applied climatology microclimate and quality of living environment: a precedent of overcrowded settlements in bandung view project online (available at: www.researchgate.net/publication/228503669)
  27. Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J., & Lawrimore, J. H. The Global Historical Climatology Network Monthly Temperature Dataset, Version 4, Journal of Climate, 31(24), 9835–9854. Retrieved Feb 16, 2022. https://journals.ametsoc.org/view/journals/clim/31/24/jcli-d-18-0094.1.xml
  28. National Center for Environmental Information. Climate at a glance. https://www.ncdc.noaa.gov/cag/ Date of reference: 07/10/2022–01/02/2023)
  29. Pilifosova, O.V., Eserkepova, I.B. & Dolgih, S.A. REGIONAL CLIMATE CHANGE SCENARIOS UNDER GLOBAL WARMING IN KAZAKHSTAN.// Climatic Change. 1997. Vol. 36, pp. 23–40. https://doi.org/10.1023/A:1005368404482
  30. Salnikov, V.; Turulina, G.; Polyakova, S.; Petrova, Y.; Skakova, A. Climate Change in Kazakhstan during the Past 70 Years // Quat. Int. 2015, Vol. 358, p. 77–82. https://doi.org/10.1016/j.quaint.2014.09.008
  31. Sörlin S. Cryo-History: Narratives of Ice and the Emerging Arctic Humanities. In The new Arctic, Stokholm: 2015, p. 327–339
  32. Stedman R. G. Norms of apparent temperature in Australia // Australian Meteorogical Magazine. 1994, Vol. 43, pp. 1–16.
  33. Toronto Public Health. Health Impact of Cold Weather. Technical Report. 2014. pp. 2–6.
  34. Wind Chill information: www.ec.gc.ca/meteo-weather
  35. Zheleznova I. V., Gushchina D. Yu., Meiramov Z., Olchev A. V. Temporal and spatial variability of dryness conditions in Kazakhstan during 1979–2021 based on reanalysis data // CLIMATE. 2022. Vol. 10, no. 10. p. 144.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The number of days with WCI values in two grades: –28.0...–40.0°С (left column) and < –40.0°C (right column) for the cities of Northern Kazakhstan (Astana, Petropavlovsk, Kostanay and Kokshetau) during the cold period (November–March). October is not represented on the charts, as no cases with medium and high risk of frostbite have been registered for it. Data for the months from November to March are shown with various shading. Within each month, the number of days of each grade is presented. On the right, the total number of days falling into this gradation for all months of the cold period in a particular year is given, the vertical dotted line shows the average number of days with this WCI gradation for the available observation period. The observation period varies by cities, the maximum coverage is 2005–2021.

Download (374KB)
3. Fig. 2. The same as in Figure 1, but for the cities of Central (Karaganda), Eastern (Ust-Kamenogorsk) and Southern (Taraz and Kyzylorda) Kazakhstan. For the cities of Southern Kazakhstan, only a grade –28.0...–40.0°С is presented, since no cases of WCI < –40.0 C have been recorded in these cities. The cities of Almaty and Shymkent are not presented, as isolated cases or no cases at all were registered.

Download (385KB)
4. Fig. 3. The same as in Figure 1, but for the cities of Western Kazakhstan (Aktau, Atyrau, Aktobe). For the cities of Aktau and Atyrau, only a grade of –28.0...–40.0°С is presented, since no cases of WCI < –40.0°C have been recorded in these cities.

Download (213KB)
5. Fig. 4. Distribution of the month averaged number of days with –39.9°C < WCI < –28 °C (a) WCI < –40°C (б) in cold period in Kazakhstan. Averaged over the period with available observations for each city.

Download (380KB)
6. Fig. 5. The number of days with PET values in two grades: 28.0...34.9°С (left column) and > 35.0˚C (right column) for the cities of Northern Kazakhstan (Astana, Petropavlovsk, Kostanay and Kokshetau) during the warm period (April-September). Data for the months from April to September are shown with various shading. The legend is the same as in Fig. 1.

Download (442KB)
7. Fig. 6. The same as in Fig. 5, but for the cities of Central (Karaganda), Eastern (Ust-Kamenogorsk) and Southern (Taraz, Kyzylorda) Kazakhstan.

Download (537KB)
8. Fig. 7. The same as in Figure 5, but for the cities of Western Kazakhstan (Aktau, Aktobe, Atyrau).

Download (375KB)
9. Fig. 8. The same as in Figure 5, but for the cities of Southern Kazakhstan (Almaty, Taraz, Shymkent).

Download (506KB)
10. Fig. 9. Distribution of the month averaged number of days with 28°C < PET < 34.9°C (а), PET > 35°C (б) in warm period in Kazakhstan. Averaged over the period with available observations for each city.

Download (486KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».