Crystal Size Distribution as a Key to Protocumulus Evolution in Layered Intrusions: Experiments, Calculations and Practice of CSD Extraction

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper provides a review of calculation and experimental approaches to reproducing three types of crystal size distributions (linear, bimodal, lognormal CSD), and also systematizes publications on CSD data in rocks of ten layered massifs. For a more detail discussion, the results for plagiodunite samples from the Yoko-Dovyren massif (Northern Baikal region, Russia), harzburgite from the marginal zone of the Monchegorsk pluton, and urtites from the Lovozero intrusion (Murmansk region, Russia) were selected. Possible causes and scenarios for the formation of three types of CSDs discovered for these objects are presented.

作者简介

S. Sobolev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ssn_collection@bk.ru
Russia, Moscow

A. Ariskin

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Faculty of Geology, Moscow State University

Email: ssn_collection@bk.ru
Russia, Moscow; Russia, Moscow

G. Nikolaev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: ssn_collection@bk.ru
Russia, Moscow

I. Pshenitsyn

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: ssn_collection@bk.ru
Russia, Moscow

参考

  1. Арискин А.А., Бармина Г.С. Моделирование фазовых равновесий при кристаллизации базальтовых магм. М.: Наука, 2000. 363 с.
  2. Арискин А.А., Бычков К.А., Николаев Г.С., Бармина Г.С. Обновленный КОМАГМАТ-5: моделирование эффектов выделения сульфидов одновременно с кристаллизацией алюмохромистой шпинели // Петрология. 2023. Т. 31. № 5.
  3. Буссен И.В. Сахаров А.С. Петрология Ловозерского щелочного массива. Л.: Наука, 1972. 296 с.
  4. Герасимовский В.И., Балашов Ю.А., Волков В.П. и др. Геохимия Ловозерского щелочного массива. М.: Наука, 1966. 398 с.
  5. Кислов Е.В. Йоко-Довыренский расслоенный массив. Улан-Удэ: Изд. Бурятского НЦ, 1998. 265 с.
  6. Колмогоров А.Н. К статистической теории кристаллизации металлов // Изв. АН СССР. Сер. Математическая. 1937. Т. 1. Вып. 3. С. 355–359.
  7. Перчук Л.Л. Пироксеновый барометр и “пироксеновые геотермы” // Докл. АН СССР. 1977. Т. 233. № 6. С. 1196–1200.
  8. Расслоенные интрузии Мончегорского рудного района: петрология, оруденение, изотопия, глубинное строение // Ред. Ф.П. Митрофанов и В.Ф. Смолькин. Апатиты: Изд-во КНЦ РАН, 2004. Ч. 1. 177 с.
  9. Симакин А.Г., Трубицын В.П., Харыбин Е.В. Распределение по размерам и глубине для кристаллов, осаждающихся в застывающей магматической камере // Физика Земли. 1998. Т. 8. С. 30–37.
  10. Смолькин В.Ф., Мокрушин А.В., Баянова Т.Б. и др. Магмоподводящий палеоканал в Мончегорском рудном районе: геохимия, изотопный U-Pb и Sm-Nd анализ (Кольский регион, Россия) // Зап. Горного ин-та. 2022. Т. 255. С. 1–14.
  11. Френкель М.Я. Тепловая и химическая динамика внутрикамерной дифференциации базитовых магм. М.: Наука, 1995. 239 с.
  12. Френкель М.Я., Ярошевский А.А., Арискин А.А. и др. Динамика внутрикамерной дифференциации базитовых магм. М.: Наука, 1998. 216 с.
  13. Чащин В.В., Баянова Т.Б., Савченко Е.Э. и др. Петрогенезис и возраст пород Нижней платиноносной зоны Мончетундровского базитового массива, Кольский полуостров // Петрология. 2020. Т. 28. № 2. С. 150–183.
  14. Andrews B.J., Befus K.S. Supersaturation Nucleation and Growth of Plagioclase: a numerical model of decompression-induced crystallization // Contrib. Mineral. Petrol. 2020. V. 175. № 3. P. 1–20. https://doi.org/10.1007/s00410-020-1660-9
  15. Annen C. From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust // Earth Planet. Sci. Lett. 2009. V. 284. № 3–4. P. 409–416. https://doi.org/10.1016/j.epsl.2009.05.006
  16. Ariskin A.A., Kostitsyn Y.A., Konnikov E.G. et al. Geochronology of the Dovyren intrusive complex, northwestern Baikal area, Russia, in the Neoproterozoic // Geochem. Int. 2013. V. 51. P. 859–875. https://doi.org/10.1134/S0016702913110025
  17. Ariskin A., Danyushevsky L., Nikolaev G. et al. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility // Lithos. 2018. V. 302–303. P. 242–262. https://doi.org/10.1016/j.lithos.2018.01.001
  18. Armienti P., Tarquini S. Power law olivine crystal size distributions in lithospheric mantle xenoliths // Lithos. 2002. V. 65 (3–4). P. 273–285. https://doi.org/10.1016/S0024-4937(02)00195-0
  19. Arzamastsev A.A. Unique Paleozoic Intrusions of the Kola Peninsula. Apatity: Geological Institute of the Kola Science Centre, 1994. 79 p.
  20. Blow K.E., Quigley D., Sosso G.C. The seven deadly sins: When computing crystal nucleation rates, the devil is in the details // J. Chemical Physics. 2021. V. 155 (4). P. 040901. https://doi.org/10.1063/5.0055248
  21. Boorman S., Boudreau A., Kruger F.J. The Lower Zone-Critical Zone transition of the Bushveld Complex: a quantitative textural study // J. Petrol. 2004. V. 45 (6). P. 1209–1235. https://doi.org/10.1093/petrology/egh011
  22. Brugger C.R., Hammer J.E. Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma // Earth Planet. Sci. Lett. 2010. V. 300 (3–4). P. 246–254. https://doi.org/10.1016/j.epsl.2010.09.046
  23. Cashman K.V. Relationship between plagioclase crystallization and cooling rate in basaltic melts // Contrib. Mineral. Petrol. 1993. V. 113. P. 126–142. https://doi.org/10.1007/BF00320836
  24. Cashman K.V., Marsh B.D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake // Contrib. Mineral. Petrol. 1988. V. 99 (3). P. 292–305. https://doi.org/10.1007/BF00375363
  25. Da Silva M.M., Holtz F., Namur O. Crystallization experiments in rhyolitic systems: The effect of temperature cycling and starting material on crystal size distribution // Amer. Mineral. 2017. V. 102 (11). P. 2284–2294. https://doi.org/10.2138/am-2017-5981
  26. Dowty E. Chapter 10. Crystal Growth and Nucleation Theory and the Numerical Simulation of Igneous Crystallization // Physics of Magmatic Processes. Princeton University Press, 1980. 600 p. https://doi.org/10.1515/9781400854493.419
  27. Eberl D.D., Drits V.A., Środoń J. Deducing growth mechanisms for minerals from the shapes of crystal size distributions // Amer. J. Sci. 1998. V. 298 (6). P. 499–533. https://doi.org/10.2475/ajs.298.6.499
  28. Féménias O., Coussaert N., Brassinnes S. et al. Emplacement processes and cooling history of layered cyclic unit II-7 from the Lovozero alkaline massif (Kola Peninsula, Russia) // Lithos. 2005. V. 83. № 3–4. P. 371–393. https://doi.org/10.1016/j.lithos.2005.03.012
  29. Godel L.M., Barnes S.J., Barnes S. Deposition computed mechanisms of magmatic sulphide liquids: evidence from high-resolution X-ray tomography and trace element chemistry of komatiite-hosted disseminated sulphides // J. Petrol. 2013. V. 54. № 7. P. 1455–1481 https://doi.org/10.1093/petrology/egt018
  30. Hersum T.G., Marsh B.D. Igneous microstructures from kinetic models of crystallization // J. Volcanol. Geothermal Res. 2006. V. 154 (1–2). P. 34–47. https://doi.org/10.1016/j.jvolgeores.2005.09.018
  31. Higgins M.D. Measurement of crystal size distributions // Amer. Mineral. 2000. V. 85 (9). P. 1105–1116. https://doi.org/10.2138/am-2000-8-901
  32. Higgins M.D. A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: Evidence for textural coarsening // Contrib. Mineral. Petrol. 2002. V. 144 (3). P. 314–330. https://doi.org/10.1007/s00410-002-0399-9
  33. Higgins M.D. Quantitative Textural Measurements in Igneous and Metamorphic Petrology. Cambridge University Press, 2006. 265 p. https://doi.org/10.1017/CBO9780511535574
  34. Hort M., Spohn T. Crystallization calculations for a binary melt cooling at constant rates of heat removal: implications for the crystallization of magma bodies // Earth Planet. Sci. Lett. 1991. V. 107 (3–4). P. 463–474. https://doi.org/10.1016/0012-821X(91)90093-W
  35. Hoshide T., Obata M., Akatsuka T. Crystal settling and crystal growth of olivine in magmatic differentiation – the Murotomisaki Gabbroic Complex, Shikoku, Japan // J. Mine-ral. Petrol. Sci. 2006. V. 101 (5). P. 223–239. https://doi.org/10.2465/jmps.101.223
  36. Hunt E.J., Finch A.A., Donaldson C.H. Layering in peralkaline magmas, Ilímaussaq Complex, S Greenland // Lithos. 2017. V. 268–271. P. 1–15. https://doi.org/10.1016/j.lithos.2016.10.023
  37. Karykowski B.T., Maier W.D., Groshev N.Y. et al. Critical controls on the formation of contact-style PGE-Ni-Cu mineralization: Evidence from the paleoproterozoic Monchegorsk Complex, Kola Region, Russia // Econ. Geol. 2018. V. 113 (4). P. 911–935.
  38. Kirkpatrick R.J. Towards a kinetic model for the crystallization of magma bodies // J. Geophys. Res. 1976. V. 81 (14). P. 2565–2571. https://doi.org/10.1029/jb081i014p02565
  39. Kirkpatrick R.J. Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea Volcano, Hawaii // GSA Bull. 1977. V. 88 (1). P. 78–84. https://doi.org/10.1130/0016-7606(1977)88<78:NAGOPM>2.0.CO;2
  40. Lifshitz I.M., Slyozov V.V. The kinetics of precipitation from supersaturated solid solutions // J. Phys. Chem. Solids. 1961. V. 19 (1–2). P. 35–50. https://doi.org/10.1016/0022-3697(61)90054-3
  41. Magee C., O’Driscoll B., Chambers A.D. Crystallization and textural evolution of a closed-system magma chamber: Insights from a crystal size distribution study of the Lilloise layered intrusion, East Greenland // Geol. Mag. 2010. V. 147 (3). P. 363–379. https://doi.org/10.1017/S0016756809990689
  42. Mao Y.J., Barnes S.J., Duan J. et al. Morphology and particle size distribution of olivines and sulphides in the jinchuan Ni-Cu sulphide deposit: Evidence for sulphide percolation in a crystal mush // J. Petrol. 2018. V. 59 (9). P. 1701–1730. https://doi.org/10.1093/petrology/egy077
  43. Mao Y.J., Barnes S.J., Qin K.Z. et al. Rapid orthopyroxene growth induced by silica assimilation: constraints from sector-zoned orthopyroxene, olivine oxygen isotopes and trace element variations in the Huangshanxi Ni–Cu deposit, Northwest China // Contrib. Mineral. Petrol. 2019. V. 174. P. 33. https://doi.org/10.1007/s00410-019-1574-6
  44. Marsh B.D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization – I. Theory // Contrib. Mineral. Petrol. 1988. V. 99 (3). P. 277–291. https://doi.org/10.1007/BF00375362
  45. Marsh B.D. On the interpretation of crystal size distributions in magmatic systems // J. Petrol. 1998. V. 39 (4). P. 553–599. https://doi.org/10.1093/petroj/39.4.553
  46. McDonald M.A., Bommarius A.S., Grover M.A. et al. Direct observation of growth rate dispersion in the enzymatic reactive crystallization of ampicillin // Processes. 2019. V. 7 (6). P. 1–17. https://doi.org/10.3390/PR7060390
  47. Melnik O.E., Blundy J.D., Rust A.C. et al. Subvolcanic plumbing systems imaged through crystal size distributions // Geology. 2011. V. 39 (4). P. 403–406. https://doi.org/10.1130/G31691.1
  48. Mikhailova J.A., Ivanyuk G.Y., Kalashnikov A.O. et al. Petrogenesis of the eudialyte complex of the lovozero alkaline massif (Kola Peninsula, Russia) // Minerals. 2019. V. 9 (10). P. 581. https://doi.org/10.3390/min9100581
  49. Mills R.D., Glazner A.F. Experimental study on the effects of temperature cycling on coarsening of plagioclase and olivine in an alkali basalt // Contrib. Mineral. Petrol. 2013. V. 166 (1). P. 97–111. https://doi.org/10.1007/s00410-013-0867-4
  50. Mollard E., Martel C., Le Trong E. et al. Theoretical models of decompression-induced plagioclase nucleation and growth in hydrated silica-rich melts // Frontiers in Earth Science. 2020. V. 8. P. 1–15. https://doi.org/10.3389/feart.2020.00203
  51. Mydlarz J. An exponential-hyperbolic crystal growth rate model // Crystal Research and Technology. 1995. V. 30 (6). P. 747–761. https://doi.org/10.1002/crat.2170300604
  52. O’Driscoll B., Donaldson C.H., Troll V.R. et al. An origin for harrisitic and granular olivine in the rum layered suite, NW Scotland: a crystal size distribution study // J. Petrol. 2007. V. 48 (2). P. 253–270. https://doi.org/10.1093/petrology/egl059
  53. Orlando A., D’Orazio M., Armienti P. et al. Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy) // Eur. J. Mineral. 2008. V. 20. P. 653–664. https://doi.org/10.1127/0935-1221/2008/0020-1841
  54. Park Y., Hanson B. Experimental investigation of Ostwald-ripening rates of forsterite in the haplobasaltic system // J. Volcanol. Geotherm. Res. 1999. V. 90 (1–2). P. 103–113. https://doi.org/10.1016/S0377-0273(99)00023-2
  55. Randolph A.D., Larson M.A. Theory of Particulate Processes. New York: Academic Press, 1971. 251 p.
  56. Randolph A.D., White E.T. Modelling size dispersion in the prediction of crystal size distribution // Chem. Eng. Sci. 1977. V. 32. P. 1067–1076.
  57. Resmini R.G. Modeling of crystal size distributions (CSDs) in sills // J. Volcanol. Geotherm. Res. 2007. V. 161 (1–2). P. 118–130. https://doi.org/10.1016/j.jvolgeores.2006.06.023
  58. Salisbury M.J., Bohrson W.A., Clynne M.A. et al. Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: Implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA // J. Petrol. 2008. V. 49 (10). P. 1755–1780. https://doi.org/10.1093/petrology/egn045
  59. Simakin A.G., Bindeman I.N. Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems // J. Volcanol. Geotherm. Res. 2008. V. 177 (4). P. 997–1010. https://doi.org/10.1016/j.jvolgeores.2008.07.012
  60. Simakin A.G., Devyatova V.N., Nekrasov A.N. Crystallization of Cpx in the Ab-Di system under the oscillating temperature: contrast dynamic modes at different periods of oscillation // Eds. Y. Litvin, O. Safonov. Advances in Experimental and Genetic Mineralogy. Springer Mineralogy. Springer Cham, 2020. https://doi.org/10.1007/978-3-030-42859-4_5
  61. Simone C., Mattia de’ M.V., Patrizia L. CrystalMom: a new model for the evolution of crystal size distributions in magmas with the quadrature-based method of moments // Contrib. Mineral. Petrol. 2017. V. 172 (11–12). https://doi.org/10.1007/s00410-017-1421-6
  62. Sosso G.C., Chen J., Cox S.J. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations // Chem. Rev. 2016. V. 116 (12). P. 7078–7116. https://doi.org/10.1021/acs.chemrev.5b00744
  63. Špillar V., Dolejš D. Calculation of time-dependent nucleation and growth rates from quantitative textural data: Inversion of crystal size distribution // J. Petrol. 2013. V. 54 (5). P. 913–931. https://doi.org/10.1093/petrology/egs091
  64. Špillar V., Dolejš D. Kinetic model of nucleation and growth in silicate melts: Implications for igneous textures and their quantitative description // Geochim Cosmochim. Acta. 2014. V. 131. P. 164–183. https://doi.org/10.1016/j.gca.2014.01.022
  65. Spohn T., Hort M., Fischer H. Numerical simulation of the crystallization of multicomponent melts in thin dikes or sills. 1. The liquidus phase // J. Geophys. Res. 1988. V. 93 (B5). P. 4880–4894. https://doi.org/10.1029/JB093iB05p04880
  66. Tarquini S., Favalli M. A microscopic information system (MIS) for petrographic analysis // Computers & Geosciences. 2010. V. 36 (5). P. 665–674 https://doi.org/10.1016/j.cageo.2009.09.017
  67. Toramaru A. Model of nucleation and growth of crystals in cooling magmas // Contrib. Mineral. Petrol. 1991. V. 108 (1–2). P. 106–117. https://doi.org/10.1007/BF00307330
  68. Vona A., Romano C., Dingwell D.B. et al. The rheology of crystal-bearing basaltic magmas from Stromboli and Etna // Geochim. Cosmochim. Acta. 2011. V. 75 P. 3214–3236. https://doi.org/10.1016/j.gca.2011.03.031
  69. Williams E., Boudreau A.E., Boorman S. et al. Textures of orthopyroxenites from the Burgersfort bulge of the eastern Bushveld Complex, Republic of South Africa // Contrib. Mineral. Petrol. 2006. V. 151 (4) P. 480–492. https://doi.org/10.1007/s00410-006-0072-9
  70. Yao Z. Sen, Qin K. Zhang, Xue S. Chao. Kinetic processes for plastic deformation of olivine in the Poyi ultramafic intrusion, NW China: Insights from the textural analysis of a ~1700 m fully cored succession // Lithos. 2017. V. 284–285. P. 462–476. https://doi.org/10.1016/j.lithos.2017.05.002
  71. Zieg M.J., Marsh B.D. Crystal size distributions and scaling laws in the quantification of igneous textures // J. Petrol. 2002. V. 43 (1). P. 85–101. https://doi.org/10.1093/petrology/43.1.85

补充文件

附件文件
动作
1. JATS XML
2.

下载 (26KB)
3.

下载 (271KB)
4.

下载 (5MB)
5.

下载 (7MB)
6.

下载 (1MB)
7.

下载 (119KB)

版权所有 © С.Н. Соболев, А.А. Арискин, Г.С. Николаев, И.В. Пшеницын, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».