Minerals of the Tochilinite-Ferrotochilinite Series from Rocks of the Urals and Trans-Urals: Mineral Associations, Chemical Composition, Genesis
- Authors: Pribavkin S.V.1, Pushkarev E.V.1, Chashchukhin I.S.1, Erokhin Y.V.1, Korovko A.V.1
-
Affiliations:
- A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
- Issue: Vol 33, No 2 (2025)
- Pages: 71-91
- Section: Articles
- URL: https://journals.rcsi.science/0869-5903/article/view/290044
- DOI: https://doi.org/10.31857/S0869590325020044
- EDN: https://elibrary.ru/uhjpeg
- ID: 290044
Cite item
Abstract
The paper presents the results of studying the scarce iron–magnesium sulfide-hydroxides of the tochilinite-ferrotochilinite series with the ideal formula 6FeS·5Mg(OH)2. These minerals are formed during serpentinization of ultrabasites of different nature and were described in peridotites of the Kempirsai, Khabarny, Kytlym and Uktus massifs in the Urals and the Verkhne-Iusskaya area of the Shaim petroleum region of Western Siberia. The aim of this work is to examine the poorly studied chemical composition of tochilinite, to determine its mineral associations and conditions of formation. The minerals were analyzed by optical and electron scanning microscopy, Raman and IR spectroscopy. Based on the magnesium number (ХMg), the minerals could be divided into tochilinite and ferrotochilinite. High-Mg minerals (ХMg = 0.73–0.79) are found in the Uktus massif and in the Verkhne-Iusskaya area, and low-Mg varieties (ХMg = 0.15–0.38) occur in the Khabarny and Kytlym massifs. The presence of mixed-layer phases represented by the alternation of nano-scale layers of tochilinite or ferrotochilinite with serpentine is assumed. The chromium-bearing varieties of tochilinite are noted. Mechanisms and chemical reactions leading to the formation of tochilinites during the low-temperature transformation of peridotite in the presence of water are discussed. In most cases, this is the interaction of metamorphic water with magmatic sulfides during the serpentinization of peridotite, or the influence of sedimentary or another waters containing dissolved sulfur on them. It is concluded that tochilinite served as a sulfur absorbent during early reticulate serpentinization of ultramafic rocks. Tochilinite could be used as a promising geothermometer for low-temperature ultramafic mineral assemblages.
Keywords
Full Text

About the authors
S. V. Pribavkin
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Author for correspondence.
Email: pribavkin@igg.uran.ru
Russian Federation, Yekaterinburg
E. V. Pushkarev
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Email: pribavkin@igg.uran.ru
Russian Federation, Yekaterinburg
I. S. Chashchukhin
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Email: pribavkin@igg.uran.ru
Russian Federation, Yekaterinburg
Yu. V. Erokhin
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Email: pribavkin@igg.uran.ru
Russian Federation, Yekaterinburg
A. V. Korovko
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Email: pribavkin@igg.uran.ru
Russian Federation, Yekaterinburg
References
- Александров С.М., Сенин В.Г. Генезис и состав сульфидной минерализации и ее видоизменение в магнезиальных скарнах // Геохимия. 2005. № 6. C. 614–633.
- Варлаков А.С. Петрография, петрохимия и геохимия гипербазитов Оренбургского Урала. М.: Наука, 1978. 239 с.
- Варлаков А.С., Котляров В.А., Никольская Н.Е. Точилинит как продукт серпентинизации ультраосновных пород // Уральская минералогическая школа. 1995. № 4. С. 68–80.
- Геология, петрогеохимия и хромитоносность габбро-гипербазитовых массивов Южного Урала / Под ред. Д.Е. Савельева, В.И. Сначева, Е.Н. Савельевой, Е.А. Бажина. Уфа: ДизайнПолиграфСервис, 2008. 320 с.
- Иванов О.К., Силаев В.И., Филиппов В.Н. Кальцитовые карбонатиты дунит-габбро-плагиогранитной формации Платиноносного пояса Урала как результат кристаллизационной дифференциации плагиоклазитов // Уральский геологический журнал. 2010. № 4. C. 19–40.
- Иванов О.К., Силаев В.И., Филиппов В.Н. Сульфат-форстерит из сульфидизированных дунитов Косьвинского массива, Урал // Уральский геологический журнал. 2011. № 2. С. 17–32.
- Ефимов А.А., Ефимова Л.П. Кытлымский платиноносный массив. М.: Недра, 1967. 340 с.
- Минералогия Урала. Оксиды и гидроксиды / Под. ред. А.Ф. Бушмакина, О.К. Иванова, В.И. Поповой, Б.В. Чеснокова. Екатеринбург – Миасс: УрО РАН, 2007. Ч. 2. 288 с.
- Никишова Л.В., Корнилова В.П., Шамшина Э.А. Точилинит и пироаурит – шегренит – минералы с “гибридной структурой” в кимберлитовых породах Якутии // ЗВМО. 1983. Ч. CXII. Вып. 5. C. 614–620.
- Органова Н.И., Генкин А.Д., Дриц В.А. и др. Точилинит – новый сульфид-гидроокисел железа и магния // ЗВМО. 1971. Ч. С. Вып. 4. С. 477–487.
- Органова Н.И., Дриц В.А., Дмитрик А.Л. Структурное исследование точилинита. 1. Изометрическая разновидность // Кристаллография. 1972. Т. 17. Вып. 4. С. 761–767.
- Органова Н.И., Дриц В.А., Дмитрик А.Л. Структурное исследование точилинита. 2. Игольчатая разновидность. Необычные дифракционные картины // Кристаллография. 1973. Т. 18. Вып. 5. С. 960–965.
- Органова Н.И., Горшков А.И., Диков Ю.П. и др. Новое о точилините // Изв. АН СССР. Сер. геолог. 1988. № 6. С. 84–98.
- Павлов Н.В., Кравченко Г.Г., Чупрынина И.И. Хромиты Кемпирсайского плутона. М.: Наука, 1968. 173 с.
- Пеков И.В., Середа Е.В., Полеховский Ю.С. и др. Ферроточилинит 6FeS·5Fe(OH)2 – новый минерал из Октябрьского месторождения (Норильский район, Сибирь, Россия) // Зап. РМО. 2012. Ч. CXLI. № 4. С. 1–11.
- Петрология постгарцбургитовых интрузивов кемпирсайско-хабарнинской офиолитовой ассоциации (Южный Урал) / Под ред. П.А. Балыкина, Э.Г. Конникова, А.П. Кривенко и др. Свердловск: УрО РАН СССР, 1991. 161 с.
- Попов В.А. Точилинит, двойники диопсида, брусита, хабазита и гармотома из родингитов Баженовского месторождения // Уральский минералогический сборник. 1995. № 5. С. 139–144.
- Прибавкин С.В., Панкрушина Е.А., Михеева А.В., Готтман И.А. Карбонатные гидротермально-метасоматические образования Косьвинского Камня (Северный Урал): продукты термохимической сульфатредукции ангидрита // Ежегодник-2017. Тр. ИГГ УрО РАН. 2018. Вып. 165. С. 156–161.
- Пушкарев Е.В. Петрология Уктусского дунит-клинопироксенит-габбрового массива (Средний Урал). Екатеринбург: ИГГ УрО РАН, 2000. 291 с.
- Спиридонов Э.М., Гриценко Ю.Д. Эпигенетический низкоградный метаморфизм и Co-Ni-Sb-As минерализация в Норильском рудном поле. М.: Научный мир, 2009. 218 с.
- Чащухин И.С., Гмыра В.Г., Лагутина М.В., Пальгуева Г.В. Троилит и точилинит сульфидоносных дунитов Кемпирсайского массива // Региональная минералогия Урала. Свердловск: УрО АН СССР, 1990. Т. 1. С. 42–45.
- Чащухин И.С., Вотяков С.Л., Панкрушина Е.А. Первая находка метана в оливине из незатронутых серпентинизацией ультрамафитов // Тр. Ферсмановской научной сессии ГИ КНЦ РАН. 2020. 17. С. 543–546.
- Штейнберг Д.С., Чащухин И.С. Серпентинизация ультрабазитов. М.: Наука, 1977. 312 с.
- Ярославцев Г.В. Геологическое доизучение масштаба 1 : 50 000 Верхне-Макаровской площади в пределах листов О-41-109-Г, О-41-110-В-в, г; О-41-122-А-а, б; О-41-121-В; О-41-121-Г-б, г; О-41-133-Б-б и общие поиски на площади ГДП и в пределах листов О-41-121-А-б; О-41-121-Г-а. Отчет Мраморской ГСП за 1989–1994 гг. Екатеринбург, 1995.
- Bach W., Klein F. The petrology of seafloor rodingites: Insights from geochemical reaction path modeling // Lithos. 2009. V. 112. P. 103–117.
- Beard J.S. Occurrence and composition of tochilinite and related minerals in Site 1068 serpentinites / Eds. M.O. Beslier, R.B. Whitmarsh., P.J. Wallace, J. Girardeau. Proc. ODP, Sci. Results. 2001. V. 173. P. 1–9.
- Beard J.S., Hopkinson L. A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry // J. Geophys. Res. 2000. V. 105. № B7. P. 16,527–16,539.
- Bolney R., Grosch M., Winkler M. et al. Facile synthesis and characterization of pure tochilinite-like materials from nanoparticulate FeS // Z. Anorg. Allg. Chem. 2022. e202200219.
- Boschi C., Dini A., Baneschi I. et al. Brucite-driven CO2 uptake in serpentinized dunites (Ligurian Ophiolites, Montecastelli, Tuscany) // Lithos. 2017. V. 288–289. P. 264–281.
- Browning L.B., Bourcier W.L. Tochilinite: A sensitive indicator of alteration conditions on the CM asteroidal parent body // Proceedings, 44th Lunar and Planet. Sci. Conf. 1996. P. 171–172.
- Chukanov N.V. Infrared spectra of mineral species. Vol. 1 – Springer Geochemistry/Mineralogy. Netherlands: Springer, 2014. 1726 p.
- Encheva S., Yanakieva D., Petrov P., Gospodinov N. Tochilinite from the Yakovitsa ultramafic massif, SE Rhodopes – a new mineral for Bulgaria // National Conference with international participation “GEOSCIENCES 2016”. Bulgarian Geol. Soc. 2016. P. 25–26.
- Etiope G., Sherwood Lollar B. Abiotic methane on Earth // Rev. Geophys. 2013. V. 51. P. 276–299.
- Farsang S., Franchi I.A., Zhao X. et al. Carbonate assemblages in Cold Bokkeveld CM chondrite reveal complex parent body evolution // Meteor. Planet. Sci. 2021. V. 56. № 4. P. 723–741.
- Frost R. On the stability of sulfides, oxides, and native metals in serpentinite // J. Petrol. 1985. V. 26. Iss. 1. P. 31–63.
- Haack H., Grau T., Bischoff A. et al. A new CM fall from Denmark // Meteor. Planet. Sci. 2012. V. 47. № 1. P. 30–50.
- Harris D.C., Vaughan D.J. Two fibrous iron sulfides and valleriite from Сyprus with new data on valleriite // Amer. Mineral. 1972. V. 57. P. 1037–7052.
- Hewins R.H., Bourot-Denise M., Zanda B. et al. The Paris meteorite, the least altered CM chondrite so far // Geochim. Cosmochim. Acta. 2014. V. 124. P. 190–222.
- Jambor J.L. New occurrences of the hybrid sulphide tochilinite // Geol. Surv. Can. 1976. Paper 76-1B. P. 65–69.
- Kelemen P.B., Leong J.A., de Obeso J.C. et al. Initial results from the Oman Drilling Project Multi-Borehole Observatory: Petrogenesis and ongoing alteration of mantle peridotite in the weathering horizon // J. Geophys. Res.: Solid Earth. 2021. V. 126. Iss. 12. e2021JB022729.
- Klein F., Bach W., Jöns N. et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge // Geochim. Cosmochim. Acta. 2009. V. 73. P. 6868–6893.
- Klein F., Bach W., Humphris S.E. et al. Magnetite in seafloor serpentinite – Some like it hot // Geology. 2014. V. 42. № 2. P. 135–138.
- Kozerenko S.V., Organova N.J., Fadeev V.V. et al. Tochilinite produced in laboratory // Lunar and Planetary Science Conference. 1996. V. 27. Pt. 2. P. 695–696.
- Kozerenko S.V., Fadeev V.V., Organova N.I. et al. Synthesis, formation conditions and crystallochemistry of tochilinites – Iron, magnesium and sodium hydroxide-sulfides // Exp. Geosci. 2001. 10. P. 57–58.
- Lindgren P., Lee M.R., Sparkes R. et al. Signatures of the post-hydration heating of highly aqueously altered CM carbonaceous chondrites and implications for interpreting asteroid sample returns // Geochim. Cosmochim. Acta. 2020. V. 289. P. 69–92.
- Mackinnon I.D.R., Zolensky M.E. Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites // Nature. 1984. V. 309. P. 240–242.
- Matsubara S., Kato A. Tochilinite in ultrabasic rock from Kurotani, Gifu Prefecture, Central Japan // Bull. Natn. Sci. Mus., Tokyo, Ser. C. 1992. V. 18. № 4. P. 117–120.
- McCollom T.M., Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks // Geochim. Cosmochim. Acta. 2009. V. 73. P. 856–875.
- Nickel E.H., Hudson D.R. The replacement of chrome spinel by chromian valleriite in sulphide-bearing ultramafic rocks in Western Australia // Contrib. Mineral. Petrol. 1976. V. 55. P. 265–277.
- Mikhlin Y.L., Borisov R.V., Bayukov O.A. et al. Facile synthesis and selected characteristics of two-dimensional material composed of iron sulfide and magnesium-based hydroxide layers (tochilinite) // New J. Chem. 2023. V. 47. P. 11869–11881.
- Muramatsu Y., Nambu M. Tochilinite and cuprian tochilinite from the Kamaishi mine, Iwate prefecture, Japan // J. Japan. Assoc. Mineral. Petrol. Econ. Geol. 1980. V. 76. P. 377–384.
- Nakamura T., Nakamuta Y. X-ray study of PCP from the Murchison CM carbonaceous chondrite // Proc. NIPR Symp. Antarctic Meteorites. 1996. № 9. P. 37–50.
- Page N.J. Serpentinization at Burro Mountain, California // Contrib. Mineral. Petrol. 1967. V. 14. P. 321–342.
- Palmer E.E., Lauretta D.S. Aqueous alteration of kamacite in CM chondrites // Meteor. Planet. Sci. 2011. V. 46. P. 1587–1607.
- Peng Y., Jing Y. Hydrothermal preparation of analogous matrix materials of carbonaceous chondrites from metal alloy particles // Meteor. Planet. Sci. 2014. V. 408. P. 252–262.
- Peng Y., Xu L., Xi G. et al. An experimental study on the hydrothermal preparation of tochilinite nanotubes and tochilinite–serpentine intergrowth nanotubes from metal particles // Geochim. Cosmochim. Acta. 2007. V. 71. P. 2858–2875.
- Pignatelli I., Marrocchi Y., Mugnaioli E. et al. Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites // Geochim. Cosmochim. Acta. 2017. V. 209. P. 106–122.
- Schulte M., Shock E. Coupled organic synthesis and mineral alteration on meteorite parent bodies // Meteor. Planet. Sci. 2004. V. 39. № 9. P. 1577–1590.
- Suttle M.D., King A.J., Schofield P.F. et al. The aqueous alteration of CM chondrites, a review // Geochim. Cosmochim. Acta. 2021. V. 299. P. 219–256.
- Templeton A.S., Ellison E.T., Glombitza C. et al. Accessing the subsurface biosphere within rocks undergoing active lowtemperature serpentinization in the Samail ophiolite (Oman Drilling Project) // J. Geophys. Res. 2021. V. 126. e2021JG006315.
- Tomeoka K., Buseck P.R. Indicators of aqueous alteration in CM carbonaceous chondrites: microtextures of a layered mineral containing Fe, S, O and Ni // Geochim. Cosmochim. Acta. 1985. V. 49. P. 2149–2163.
- Tonui E.K., Zolensky M., Hiroi T. et al. Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I. Cl and CM chondrites // Geochim. Cosmochim. Acta. 2014. V. 126. P. 284–306.
- Van de Vusse R., Powell R. The interpretation of pyrrhotine-pentlandite-tochilinite-magnetite-magnesite textures in serpentinites from Mount Keith, Western Australia // Mineral. Mag. 1983. V. 47. P. 501–505.
- Vacher L.G., Truche L., Faure F. et al. Deciphering the conditions of tochilinite and cronstedtite formation in CM chondrites from low temperature hydrothermal experiments // Meteor. Planet. Sci. 2019. V. 54. № 8. P. 1870–1889.
- Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. P. 291–320.
- Zolensky M.E. Hydrothermal alteration of CM carbonaceous chondrites: implications of the identification of tochilinite as one type of meteoritic PCP // Meteoritics. 1984. V. 19. P. 346–347.
- Zolensky M., Barrett R., Browning L. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites // Geochim. Cosmochim Acta. 1993. V. 57. Р. 3123–3148.
- Zolensky M.E., Mackinnon I.D.R. Microstructures of cylindrical tochilinites // Amer. Mineral. 1986. V. 71. P. 1201–1209.
- Zolensky M.E., Bourcier W.L., Gooding J.L. Aqueous alteration on the hydrated asteroids: Results of EQ3/6 computer simulations // Icarus. 1989. V. 78. P. 411–425.
- Zolensky M.E., Mittlefehldt D.W., Lipschutz M.E. et al. CM chondrites exhibit the complete petrologic range from type 2 to 1 // Geochim. Cosmochim. Acta. 1997. V. 61. P. 5099–5115.
Supplementary files
