Features of counter chemical diffusion of petrogenic components (SiO₂, Al₂O₃, Na₂O, CaO, MgO, FeO) and CO₃²⁻ Anion in the Interaction of Basalt and Kimberlite Melts At P–Т Parameters of the Upper Mantle (Experimental Study)
- 作者: Persikov E.S.1, Bukhtiyarov P.G.1, Sokol A.G.2, Nekrasov A.N.1, Sultanov D.M.1
-
隶属关系:
- Korzhinskii Institute of Experimental Mineralogy RAS
- Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Sciences
- 期: 卷 33, 编号 2 (2025)
- 页面: 92-102
- 栏目: Articles
- URL: https://journals.rcsi.science/0869-5903/article/view/290046
- DOI: https://doi.org/10.31857/S0869590325020055
- EDN: https://elibrary.ru/uhhjmk
- ID: 290046
如何引用文章
详细
New results have been obtained from experimental studies of the characteristics of counter chemical diffusion of the main petrogenic components (SiO2, Al2O3, Na2O, CaO, MgO, FeO) and the CO₃²⁻ anion during the interaction of basalt and kimberlite melts at mantle pressures. The studies were carried out by the diffusion pair method using an original high-pressure installation of the “BARS” type at a pressure of 5.5 GPa and a temperature 1850°C. It has been shown that the rate of counter chemical diffusion of all the main components of melts (SiO2, Al2O3, Na2O, CaO, MgO, FeO) and the CO₃²⁻ anion is almost identical in the interaction of model basalt and kimberlite carbonate-containing melts, and is approximately 1 order of magnitude greater than the diffusion rate these components during the interaction of such melts at moderate pressures (100 MPa). The equal rates of diffusion of CaO and the CO₃²⁻ anion indicate that the diffusion of carbonate CaCO3 from the kimberlite into the basaltic (model and natural) melt remains of the minal nature even at such a high pressure. The diffusion pattern changes significantly during the interaction of a melt of natural magnesian basalt and model kimberlite, as was the case during the interaction of such melts at moderate pressures. In this case, along with the minal diffusion of calcite into magnesian basalt, the diffusion rates of the remaining components of the melts become significantly higher. A weak exponential concentration dependence of all diffusing components has been established, which is close to Di = const, and which occurred during the interaction of such melts at moderate pressures.
全文:

作者简介
E. Persikov
Korzhinskii Institute of Experimental Mineralogy RAS
编辑信件的主要联系方式.
Email: sokola@igm.nsc.ru
俄罗斯联邦, Chernogolovka, Moscow District
P. Bukhtiyarov
Korzhinskii Institute of Experimental Mineralogy RAS
Email: persikov@iem.ac.ru
俄罗斯联邦, Chernogolovka, Moscow District
A. Sokol
Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Sciences
Email: pavel@iem.ac.ru
俄罗斯联邦, Novosibirsk
A. Nekrasov
Korzhinskii Institute of Experimental Mineralogy RAS
Email: alex@iem.ac.ru
俄罗斯联邦, Chernogolovka, Moscow District
D. Sultanov
Korzhinskii Institute of Experimental Mineralogy RAS
Email: Dilshod.Soultanov@iem.ac.ru
俄罗斯联邦, Chernogolovka, Moscow District
参考
- Персиков Э.С., Бухтияров П.Г., Некрасов Н.А. Взаимосвязь диффузии петрогенных (SiO2, Al2O3, Na2O, CaO, MgO, FeO, TiO2) и летучих (Н2О) компонентов и вязкости расплавов системы обсидиан-дацит-андезит-базальт-Н2О (экспериментально-теоретическое исследование // Вест. ОНЗ РАН. 2011. Т. 3. NZ6076. doi: 10.2205/2011NZ000206
- Шарыгин И.С., Литасов К.Д., Шацкий А.Ф. и др. Экспериментальное исследование плавления кимберлита трубки Удачная-Восточная при 3.0–6.5 ГПа и 900–1500°С // Докл. АН. 2013. Т. 448. № 4. P. 452—457.
- Baker D.R. Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 kbar, application of transition state theory, and diffusion in zoned magma chambers // Contrib. Mineral. Petrol. 1990. V. 104. P. 407–423.
- Baker D.R. Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves // Contrib. Mineral. Petrol. 1991. V. 106. P. 462–473.
- Baker D.R. Tracer diffusion of network formers and multicomponent diffusion in dacitic and rhyolitic melts // Geochim. Cosmochim. Acta. 1992. V. 56. P. 617–634.
- Bowen N.L. Diffusion in silicate melts // J. Geol. 1921. V. 29. P. 295–317.
- Crank J. The Mathematics of Diffusion. Clarenton Press, 1975. 414 р.
- Dalton J.A., Presnall D.C. The continuum of primary carbonatitic-kimberlite melt compositions in equilibrium with lherzolite: data from the system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa // J. Petrol. 1998. V. 39. P. 1953—1964.
- Dasgupta R., Hirschmann M.M. Melting in the Earth’s deep upper mantle caused by carbon dioxide // Nature. 2006. V. 440. P. 659–662.
- Dingwell D.B., Copurtial P., Giordano D., Nichols A.R.L. Viscosity of peridotite liquid // Earth Planet. Sci. Lett. 2004. V. 226. P. 127–138.
- Guo C., Zhang Y. Multicomponent diffusion in silicate melts: SiO2-TiO2-Al2O3-MgO-CaO-Na2O-K2O system // Geochim. Cosmochim. Acta. 2016. V. 195. P. 126–141.
- Kamenetsky V.S., Kamenetsky M.B., Weiss Y. et al. How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland // Lithos. 2009. V. 112S. P. 334–346.
- Kavanagh J.L., Sparks R.S.J. Temperature changes in ascending kimberlite magma // Earth Planet. Sci. Lett. 2009. V. 286. P. 404–413.
- Kopylova M.G., Matveev S., Raudseep M. Searching for parental kimberlite melt // Geochim. Cosmochim. Acta. 2007. V. 71. P. 3616–3629.
- Kress V.C., Chiorso M.S. Multicomponent diffusion in basaltic melts // Geochim. Cosmochim. Acta. 1995. V. 59. P. 313–324.
- Le Maitre R.W. The сhemical variability of some common igneous rocks // J. Petrol. 1976. V. 117. № 4. P. 589—637.
- Liang Y. Multicomponent diffusion in molten silicates: theory, experiments, and geological applications // Rev. Mineral. Geochem. 2010. V. 72. P. 409–446. https://doi.org/10.2138/rmg.2010.72.9
- Michell R.H. Petrology of hypabyssal kimberlites: relevance to primary magma compositions // J. Volcanol. Geotherm. Res. 2008. V. 174. P. 1–8.
- Persikov E.S., Bukhtiyarov P.G. Viscosity of magmatic melts: Improved structural – chemical model // Chem. Geol. 2020. V. 556. doi: 10.1016/j.chemgeo.2020.119820
- Persikov E.S., Bukhtiyarov P.G., Sokol A.G. Viscosity of haploкimberlite and basaltic melts at high pressures // Chem. Geol. 2018. V. 497. P. 54–63. doi: 10.1016/j.chemgeo.2018.08
- Persikov E.S., Bukhtiyarov P.G., Nekrasov A.N. Experimental study of multicomponent chemical diffusion under the interaction of basalt and kimberlite melts at moderate pressure // Petrology. 2022. V. 30. № 3. P. 325–335. doi: 10.1134/S0869591122020060
- Price S.E., Russell J.K., Kopylova M.G. Primitive magma from the Jericho Pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry // J. Petrol. 2000. V. 47. P. 789—808.
- Richter F., Liang Y., Minarik W.G. Multicomponent diffusion and convection in molten MgO-Al2O3-SiO2 // Geochim. Cosmochim. Acta. 1998. V. 62. P. 1985–1991.
- Sokol A.G., Palyanov Y.N. Diamond formation in the system MgO-SiO2-H2O-C at 7.5 GPa and 1600°C // Contrib. Mineral. Petrol. 2008. V. 121. P. 33–43.
- Sparks R.S.J., Brooker R.A., Field M. et al. The nature of erupting kimberlite melts // Lithos. 2009. V. 112. P. 429–438.
- Sparks R.S.J., Baker L., Brown R.J. et al. Dynamical constraints of kimberlite volcanism // J. Volcanol. Geotherm. Res. 2006. V. 155. P. 18—48.
- Watson E.B., Sneeringer M.A., Ross A. Diffusion of dissolved carbonate in magmas: experimental results and applications // Earth Planet. Sci. Lett. 1982. V. 61. P. 346–358.
- Watson E.B., Baker D.R. Chemical diffusion in magma: An overview of experimental results and geochemical applications. Physical chemistry in magma. Advances in physical geochemistry. Eds. L.L. Perchuk, I. Kushiro. Springer-Verlag, 1991. V. 9. P. 120–151.
- Watson E.B. Diffusion in volatile-bearing magmas, Volatiles in magmas // Rev. Mineral. Eds. M.R. Carrol, J.R. Holloway, Mineral. Soc. Amer. 1994. V. 30. P. 371–411.
- Wyllie P.J. The origin of kimberlite // J. Geophys. Res. 1980. V. 85. P. 6902—6910.
- Yoder H.S. Contemporaneous basaltic and rhyolitic magmas // Amer. Mineral. 1973. V. 5. P. 153–171.
补充文件
