Origin of the Earth’s first felsic material: a hydrogen perspective?
- Authors: Aranovich L.Y.1,2, Persikov E.S.2, Bukhtiyarov P.G.2, Koshlyakova A.N.1,3, Lebedeva N.M.1
-
Affiliations:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS
- D.S. Korzhinsky Institute of Experimental Mineralogy RAS
- V.V. Vernadsky Institute of Geochemistry and Analitical Chemistry RAS
- Issue: Vol 33, No 1 (2025)
- Pages: 68–78
- Section: Articles
- URL: https://journals.rcsi.science/0869-5903/article/view/288609
- DOI: https://doi.org/10.31857/S0869590325010044
- EDN: https://elibrary.ru/vdvdvx
- ID: 288609
Cite item
Abstract
We present experimental results on melting model basalt komatiite (ВК) and enstatite chondrite (ЕСН) compositions at temperature T = 1300оС and hydrogen pressure РH₂ = 100 МПа. The experiments model interaction of Magma Ocean with the early Earth hydrogen atmosphere. The experiment products consist of silicate glasses (quenched melts) that are considerably depleted in FeO but enriched in lithophile oxides and H2O, and the iron phase with minor amounts of Si and O. Estimated equilibrium oxygen fugacity in the runs is approximately 2 log units below that of the Fe-FeO buffer. Calculations of fractional crystallization of the experimental melt demonstrate that the final products correspond to granodiorite consisted of two feldspars, clinopyroxene and quartz with minor biotite for the initial BK composition, and quatz-two feldspars-two mica granite for the initial ECH. It is shown that differentiation of the ЕСН may result in crystallization of zircon in a range T = 730–750оС. A model assuming interaction of magma ocean with a thick nebular hydrogen atmosphere with subsequent differentiation explains the formation of silica-rich water bearing melts by internal processes of planetary evolution, and does not invoke pre-conditioning of forming hydrated proto-crust.
“The only thing we know for certain is that (Hadean Earth) produced and somehow preserved the mineral zircon (ZrSiO4).” (Harrison, 2009).
Full Text

About the authors
L. Y. Aranovich
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS; D.S. Korzhinsky Institute of Experimental Mineralogy RAS
Author for correspondence.
Email: lyaranov@igem.ru
Russian Federation, Moscow; Chernogolovka
E. S. Persikov
D.S. Korzhinsky Institute of Experimental Mineralogy RAS
Email: lyaranov@igem.ru
Russian Federation, Chernogolovka
P. G. Bukhtiyarov
D.S. Korzhinsky Institute of Experimental Mineralogy RAS
Email: lyaranov@igem.ru
Russian Federation, Chernogolovka
A. N. Koshlyakova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS; V.V. Vernadsky Institute of Geochemistry and Analitical Chemistry RAS
Email: lyaranov@igem.ru
Russian Federation, Moscow; Moscow
N. M. Lebedeva
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS
Email: lyaranov@igem.ru
Russian Federation, Moscow
References
- Арискин А.А., Борисов А.А., Бармина Г.С. Моделирование равновесия железо–силикатный расплав в базальтовых системах // Геохимия. 1992. № 9. C. 1231–1240.
- Борисов А.А. Форма выделений металлического железа в экспериментальных стеклах: не верь глазам своим? // Петрология. 2021. T. 29. C. 104–109.
- Кузьмин М.И., Ярмолюк В.В., Гладкочуб Д.П. и др. Геологическая эволюция Земли: от космической пыли до обители человечества. Новосибирск: ГЕО, 2021. 325 с. (Geological evolution of the Earth: From space dust to the home of mankind. Eds. M.I. Kuzmin, V.V. Yarmolyuk, Novosibirsk, 2021. 325 p.).
- Маракушев А.А. Происхождение и эволюция Земли и других планет Солнечной системы. М.: Наука, 1992. 208 с.
- Amelin Y., Lee D.C., Halliday A. et al. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons // Nature. 1999. V. 399. P. 252–255. https://doi.org/10.1038/20426
- Aranovich L.Y. Fluid-mineral equilibria and thermodynamic mixing properties of fluid systems // Petrology. 2013. V. 21. P. 588–599. https://doi.org/10.1134/S0869591113060027
- Barin I. Thermochemical Data of Pure Substances, Third Edition. New York: VCH Publ., Inc. 1995. 1885 p.
- Barnes S. J., Arndt N. T. Distribution and geochemistry of komatiites and basalts through the Archean // Earth’s Oldest Rocks. Еds. M.J. Van Kranendonk, V.C. Bennett and J.E. Hoffmann. 2019. Р. 103–132. doi: 10.1016/b978-0-444-63901-1.00006-x
- Bea F., Montero P., Ortega M.A. LA-ICP-MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes // Can. Mineral. 2006. V. 44. P. 693–714. https://doi.org/10.2113/gscanmin.44.3.693
- Bell E.A., Boehnke P., Hopkins-Wielicki M.D., Harrison T.M. Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons // Lithos. 2015. V. 234. P. 15–26. http://dx.doi.org/10.1016/j.lithos.2015.07.014 0024-4937
- Borisov A., Aranovich L. Zircon solubility in silicate melts: New experiments and probability of zircon crystallization in deeply evolved basic melts // Chem. Geol. 2019. V. 510. Р. 103–112. https://doi.org/10.1016/j.chemgeo.2019.02.019
- Borisov A., Aranovich L. Rutile solubility and TiO2 activity in silicate melts: an experimental study // Chem. Geol. 2020. V. 556. 119817. https://doi.org/10.1016/j.chemgeo.2020.119817
- Borisov A., Behrens H., Holtz F. Ferric/ferrous ratio in silicate melts: A new model for 1 atm data with special emphasis on the effects of melt composition // Contrib. Mineral. Petrol. 2018. V. 173. P. 98. https://doi.org/10.1007/s00410-018-1524-8.
- Borisova A.Y., Zagrtdenov N.R., Toplis M.J. et al. Hydrated peridotite – basaltic melt interaction Part I: Planetary felsic crust formation at shallow depth // Front. Earth Sci. 2021. V. 9. doi: 10.3389/feart.2021.640464
- Burnham A.D., Berry A.J. Formation of the Hadean granites by melting of igneous crust // Nature Geosci. 2017. V. 10. P. 457–462. doi: 10.1038/ngeo2942
- Carlson R.W., Garçon M., O’Neil J. et al. The nature of Earth’s first crust // Chem. Geol. 2019. V. 530. https://doi.org/10.1016/j.chemgeo.2019.119321
- Compston W., Pidgeon R.T. Jack Hills, evidence of more very old detrital zircons in Western Australia // Nature. 1986. V. 321. P.766–769.
- De Capitani C., Petrakakis K. The computation of equilibrium assemblage diagrams with Theriak/Domino software // Amer. Mineral. 2010. V. 95. P. 1006–1016. doi: 10.2138/am.2010.3354
- Dauphas N. The isotopic nature of the Earth’s accreting material through time // Nature. 2017. V. 541. P. 521–524. https://doi.org/10.1038/nature20830
- Elkins–Tanton L.T. Magma Oceans in the Inner Solar System // Ann. Rev. Earth Planet. Sci. 2012. V. 40. P. 113–139.
- Frost D.J., McCammon C.A. The redox state of Earth’s mantle // Ann. Rev. Earth Planet. Sci. 2008. V. 36. P. 389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322
- Ghiorso M.S., Hirschmann M.M., Reiners P.W., Kress V.C. The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa // Geochem. Geophys. Geosys. 2002. 3U1–U36. https://doi.org/10.1029/2001GC000217
- Guo F-F., Svetov S., Maier W.D. et al. Geochemistry of komatiites and basalts in Archean greenstone belts of Russian Karelia with emphasis on platinum-group elements // Mineral. Dep. 2020. V. 55. P. 971–990. https://doi.org/10.1007/s00126-019-00909-0
- Harrison T.M. The Hadean crust: evidence from >4 Ga zircons // Ann. Rev. Earth Planet. Sci. 2009. V. 37. P. 479–505. doi: 10.1146/annurev.earth.031208.100151
- Harrison T.M. Hadean Earth. Springer Nature Switzerland AG, 2020. 291 + IX p. https://doi.org/10.1007/978-3-030-46687-9
- Hirschmann M.M. Magma oceans iron and chromium redox, and the origin of comparatively oxidized planetary mantles // Geochim. Cosmochim. Acta. 2022. V. 328. P. 221–241. https://doi.org/10.1016/j.gca.2022.04.005
- Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. P. 333–383. doi: 10.1111/j.1525-1314.2010.00923.x
- Javoy M., Kaminski E., Guyot F. et al. The chemical composition of the Earth: Enstatite chondrite models // Earth Planet. Sci. Lett. 2010. V. 293. P. 259–268. doi: 10.1016/j.epsl.2010.02.033
- Kite E.S., Fegley B., Schaefer L. et al. Superabundance of exoplanet sub-neptunes explained by fugacity crisis // Astrophys. J. Lett. 2019. V. 887. № 2. https://doi.org/10.3847/2041-8213/ab59d9
- Kite E.S., Fegley B., Jr., Schaefer L., Ford E.B. Atmosphere origins for exoplanet sub-neptunes // Astrophys. J. Lett. 2020. V. 31. P. 624–647. doi: 10.3847/1538-4357/ab6ffb
- Kubaschewski O. Iron-binary Phase Diagrams. Berlin: Springer-Verlag, 1982. 194 p. doi.org/10.1007/978-3-662-08024-5
- Laurent O., Moyen J-F., Wotzlaw J-F. et al. Early Earth zircons formed in residual granitic melts produced by tonalite differentiation // Geol. 2022. V. 50. P. 437–441. https://doi.org/10.1130/G49232.1
- Olson P.L., Sharp Z.D. Nebular atmosphere to magma ocean: A model for volatile capture during Earth accretion // PEPI. 2019. V. 294. 106294. https://doi.org/10.1016/j.pepi.2019.106294
- O’Neill H.S.C., Pownceby M.I. Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-“FeO”, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer // Contrib. Mineral. Petrol. 1993. V. 114. P. 296–314. https://doi.org/10.1007/BF01046533
- Palme H., O’Neill H.St.S. Cosmochemical estimates of mantle composition. Treatise on Geochemistry. 2nd Ed. 2014. V. 3. 1–39 p. https://doi.org/10.1016/B978-0-08-095975-7.00201-1
- Papale P., Moretti R., Barbato D. The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts // Chem. Geol. 2006. V. 229. P. 78–95. doi: 10.1016/j.chemgeo.2006.01.013
- Persikov E.S., Bukhtiyarov P.G., Aranovich L.Y. et al. Experimental modeling of formation of native metals (Fe, Ni, Co) in the Earth’s Crust by the interaction of hydrogen with basaltic melts // Geochem. Int. 2019. V. 57. P. 1035–1044. https://doi.org/10.1134/S001670291910008213
- Persikov E.S., Bukhtiyarov P.G., Aranovich L.Y., Shchekleina M.D. Features of basaltic melt-hydrogen interaction at hydrogen pressure 10–100 MPa and temperature 1100–1250оС // Chem. Geol. 2020. V. 556. 119829. https://doi.org/10.1016/j.chemgeo.2020.119829
- Sugimoto H., Fukai Y. Solubility of hydrogen in metals under high hydrogen pressures: thermodynamical calculations // Acta Metal. Mater. 1992. V. 40. P. 2327–2336. doi: 10.1016/0956-7151(92)90151-4
- Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. P. 291–320. https://doi.org/10.1180/mgm.2021.43
- Young E.D., Shahar A., Schlichting H.E. Earth shaped by primordial H2 atmospheres // Nature. 2023. V. 616. P. 306–311. https://doi.org/10.1038/s41586-023-05823-023
Supplementary files
