Origin of the Earth’s first felsic material: a hydrogen perspective?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present experimental results on melting model basalt komatiite (ВК) and enstatite chondrite (ЕСН) compositions at temperature T = 1300оС and hydrogen pressure РH₂ = 100 МПа. The experiments model interaction of Magma Ocean with the early Earth hydrogen atmosphere. The experiment products consist of silicate glasses (quenched melts) that are considerably depleted in FeO but enriched in lithophile oxides and H2O, and the iron phase with minor amounts of Si and O. Estimated equilibrium oxygen fugacity in the runs is approximately 2 log units below that of the Fe-FeO buffer. Calculations of fractional crystallization of the experimental melt demonstrate that the final products correspond to granodiorite consisted of two feldspars, clinopyroxene and quartz with minor biotite for the initial BK composition, and quatz-two feldspars-two mica granite for the initial ECH. It is shown that differentiation of the ЕСН may result in crystallization of zircon in a range T = 730–750оС. A model assuming interaction of magma ocean with a thick nebular hydrogen atmosphere with subsequent differentiation explains the formation of silica-rich water bearing melts by internal processes of planetary evolution, and does not invoke pre-conditioning of forming hydrated proto-crust.

The only thing we know for certain is that (Hadean Earth) produced and somehow preserved the mineral zircon (ZrSiO4).” (Harrison, 2009).

Full Text

Restricted Access

About the authors

L. Y. Aranovich

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS; D.S. Korzhinsky Institute of Experimental Mineralogy RAS

Author for correspondence.
Email: lyaranov@igem.ru
Russian Federation, Moscow; Chernogolovka

E. S. Persikov

D.S. Korzhinsky Institute of Experimental Mineralogy RAS

Email: lyaranov@igem.ru
Russian Federation, Chernogolovka

P. G. Bukhtiyarov

D.S. Korzhinsky Institute of Experimental Mineralogy RAS

Email: lyaranov@igem.ru
Russian Federation, Chernogolovka

A. N. Koshlyakova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS; V.V. Vernadsky Institute of Geochemistry and Analitical Chemistry RAS

Email: lyaranov@igem.ru
Russian Federation, Moscow; Moscow

N. M. Lebedeva

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS

Email: lyaranov@igem.ru
Russian Federation, Moscow

References

  1. Арискин А.А., Борисов А.А., Бармина Г.С. Моделирование равновесия железо–силикатный расплав в базальтовых системах // Геохимия. 1992. № 9. C. 1231–1240.
  2. Борисов А.А. Форма выделений металлического железа в экспериментальных стеклах: не верь глазам своим? // Петрология. 2021. T. 29. C. 104–109.
  3. Кузьмин М.И., Ярмолюк В.В., Гладкочуб Д.П. и др. Геологическая эволюция Земли: от космической пыли до обители человечества. Новосибирск: ГЕО, 2021. 325 с. (Geological evolution of the Earth: From space dust to the home of mankind. Eds. M.I. Kuzmin, V.V. Yarmolyuk, Novosibirsk, 2021. 325 p.).
  4. Маракушев А.А. Происхождение и эволюция Земли и других планет Солнечной системы. М.: Наука, 1992. 208 с.
  5. Amelin Y., Lee D.C., Halliday A. et al. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons // Nature. 1999. V. 399. P. 252–255. https://doi.org/10.1038/20426
  6. Aranovich L.Y. Fluid-mineral equilibria and thermodynamic mixing properties of fluid systems // Petrology. 2013. V. 21. P. 588–599. https://doi.org/10.1134/S0869591113060027
  7. Barin I. Thermochemical Data of Pure Substances, Third Edition. New York: VCH Publ., Inc. 1995. 1885 p.
  8. Barnes S. J., Arndt N. T. Distribution and geochemistry of komatiites and basalts through the Archean // Earth’s Oldest Rocks. Еds. M.J. Van Kranendonk, V.C. Bennett and J.E. Hoffmann. 2019. Р. 103–132. doi: 10.1016/b978-0-444-63901-1.00006-x
  9. Bea F., Montero P., Ortega M.A. LA-ICP-MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes // Can. Mineral. 2006. V. 44. P. 693–714. https://doi.org/10.2113/gscanmin.44.3.693
  10. Bell E.A., Boehnke P., Hopkins-Wielicki M.D., Harrison T.M. Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons // Lithos. 2015. V. 234. P. 15–26. http://dx.doi.org/10.1016/j.lithos.2015.07.014 0024-4937
  11. Borisov A., Aranovich L. Zircon solubility in silicate melts: New experiments and probability of zircon crystallization in deeply evolved basic melts // Chem. Geol. 2019. V. 510. Р. 103–112. https://doi.org/10.1016/j.chemgeo.2019.02.019
  12. Borisov A., Aranovich L. Rutile solubility and TiO2 activity in silicate melts: an experimental study // Chem. Geol. 2020. V. 556. 119817. https://doi.org/10.1016/j.chemgeo.2020.119817
  13. Borisov A., Behrens H., Holtz F. Ferric/ferrous ratio in silicate melts: A new model for 1 atm data with special emphasis on the effects of melt composition // Contrib. Mineral. Petrol. 2018. V. 173. P. 98. https://doi.org/10.1007/s00410-018-1524-8.
  14. Borisova A.Y., Zagrtdenov N.R., Toplis M.J. et al. Hydrated peridotite – basaltic melt interaction Part I: Planetary felsic crust formation at shallow depth // Front. Earth Sci. 2021. V. 9. doi: 10.3389/feart.2021.640464
  15. Burnham A.D., Berry A.J. Formation of the Hadean granites by melting of igneous crust // Nature Geosci. 2017. V. 10. P. 457–462. doi: 10.1038/ngeo2942
  16. Carlson R.W., Garçon M., O’Neil J. et al. The nature of Earth’s first crust // Chem. Geol. 2019. V. 530. https://doi.org/10.1016/j.chemgeo.2019.119321
  17. Compston W., Pidgeon R.T. Jack Hills, evidence of more very old detrital zircons in Western Australia // Nature. 1986. V. 321. P.766–769.
  18. De Capitani C., Petrakakis K. The computation of equilibrium assemblage diagrams with Theriak/Domino software // Amer. Mineral. 2010. V. 95. P. 1006–1016. doi: 10.2138/am.2010.3354
  19. Dauphas N. The isotopic nature of the Earth’s accreting material through time // Nature. 2017. V. 541. P. 521–524. https://doi.org/10.1038/nature20830
  20. Elkins–Tanton L.T. Magma Oceans in the Inner Solar System // Ann. Rev. Earth Planet. Sci. 2012. V. 40. P. 113–139.
  21. Frost D.J., McCammon C.A. The redox state of Earth’s mantle // Ann. Rev. Earth Planet. Sci. 2008. V. 36. P. 389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322
  22. Ghiorso M.S., Hirschmann M.M., Reiners P.W., Kress V.C. The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa // Geochem. Geophys. Geosys. 2002. 3U1–U36. https://doi.org/10.1029/2001GC000217
  23. Guo F-F., Svetov S., Maier W.D. et al. Geochemistry of komatiites and basalts in Archean greenstone belts of Russian Karelia with emphasis on platinum-group elements // Mineral. Dep. 2020. V. 55. P. 971–990. https://doi.org/10.1007/s00126-019-00909-0
  24. Harrison T.M. The Hadean crust: evidence from >4 Ga zircons // Ann. Rev. Earth Planet. Sci. 2009. V. 37. P. 479–505. doi: 10.1146/annurev.earth.031208.100151
  25. Harrison T.M. Hadean Earth. Springer Nature Switzerland AG, 2020. 291 + IX p. https://doi.org/10.1007/978-3-030-46687-9
  26. Hirschmann M.M. Magma oceans iron and chromium redox, and the origin of comparatively oxidized planetary mantles // Geochim. Cosmochim. Acta. 2022. V. 328. P. 221–241. https://doi.org/10.1016/j.gca.2022.04.005
  27. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. P. 333–383. doi: 10.1111/j.1525-1314.2010.00923.x
  28. Javoy M., Kaminski E., Guyot F. et al. The chemical composition of the Earth: Enstatite chondrite models // Earth Planet. Sci. Lett. 2010. V. 293. P. 259–268. doi: 10.1016/j.epsl.2010.02.033
  29. Kite E.S., Fegley B., Schaefer L. et al. Superabundance of exoplanet sub-neptunes explained by fugacity crisis // Astrophys. J. Lett. 2019. V. 887. № 2. https://doi.org/10.3847/2041-8213/ab59d9
  30. Kite E.S., Fegley B., Jr., Schaefer L., Ford E.B. Atmosphere origins for exoplanet sub-neptunes // Astrophys. J. Lett. 2020. V. 31. P. 624–647. doi: 10.3847/1538-4357/ab6ffb
  31. Kubaschewski O. Iron-binary Phase Diagrams. Berlin: Springer-Verlag, 1982. 194 p. doi.org/10.1007/978-3-662-08024-5
  32. Laurent O., Moyen J-F., Wotzlaw J-F. et al. Early Earth zircons formed in residual granitic melts produced by tonalite differentiation // Geol. 2022. V. 50. P. 437–441. https://doi.org/10.1130/G49232.1
  33. Olson P.L., Sharp Z.D. Nebular atmosphere to magma ocean: A model for volatile capture during Earth accretion // PEPI. 2019. V. 294. 106294. https://doi.org/10.1016/j.pepi.2019.106294
  34. O’Neill H.S.C., Pownceby M.I. Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-“FeO”, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer // Contrib. Mineral. Petrol. 1993. V. 114. P. 296–314. https://doi.org/10.1007/BF01046533
  35. Palme H., O’Neill H.St.S. Cosmochemical estimates of mantle composition. Treatise on Geochemistry. 2nd Ed. 2014. V. 3. 1–39 p. https://doi.org/10.1016/B978-0-08-095975-7.00201-1
  36. Papale P., Moretti R., Barbato D. The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts // Chem. Geol. 2006. V. 229. P. 78–95. doi: 10.1016/j.chemgeo.2006.01.013
  37. Persikov E.S., Bukhtiyarov P.G., Aranovich L.Y. et al. Experimental modeling of formation of native metals (Fe, Ni, Co) in the Earth’s Crust by the interaction of hydrogen with basaltic melts // Geochem. Int. 2019. V. 57. P. 1035–1044. https://doi.org/10.1134/S001670291910008213
  38. Persikov E.S., Bukhtiyarov P.G., Aranovich L.Y., Shchekleina M.D. Features of basaltic melt-hydrogen interaction at hydrogen pressure 10–100 MPa and temperature 1100–1250оС // Chem. Geol. 2020. V. 556. 119829. https://doi.org/10.1016/j.chemgeo.2020.119829
  39. Sugimoto H., Fukai Y. Solubility of hydrogen in metals under high hydrogen pressures: thermodynamical calculations // Acta Metal. Mater. 1992. V. 40. P. 2327–2336. doi: 10.1016/0956-7151(92)90151-4
  40. Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. P. 291–320. https://doi.org/10.1180/mgm.2021.43
  41. Young E.D., Shahar A., Schlichting H.E. Earth shaped by primordial H2 atmospheres // Nature. 2023. V. 616. P. 306–311. https://doi.org/10.1038/s41586-023-05823-023

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Backscattered electron (BSE) images of the products of the ESN (a) and VK (b) experiments. Light amoeboid and rounded precipitates are metallic iron, dark ones are glass. Note the numerous quenched olivine grains in (a), where the purple rectangles are the scanning areas (see text). The scale in (a) and (b) is the same.

Download (405KB)
3. Fig. 2. Oxygen fugacity in experiments on the interaction of hydrogen with silicate melts (squares with error bars; values ​​at 1173, 1273 and 1373 K are from (Persikov et al., 2019; Persikov et al., 2020), at 1573 K - this work). The solid curve corresponds to the Fe-FeO (IW) buffer according to (O’Neill, Pownceby, 1993), the dotted line is the temperature trend according to experimental data.

Download (65KB)
4. Fig. 3. Evolution of the melt composition (a, b) and phase composition (c, d) of basaltic komatiite (BK) and enstatite chondrite (ECN) melts. The initial compositions at T = 1300 °C correspond to those obtained in experiments at pH₂ = 100 MPa. Calculated using the pMELTS program (Ghiorso et al., 2002). Abbreviations of minerals in (c), (d) according to (Warr, 2021).

Download (373KB)
5. Fig. 4. Calculated curves of the temperature dependence of melt saturation with zircon according to (Borisov, Aranovich, 2019) and changes in the Zr content in the melt. The intersection points of the curves characterize the temperature of the onset of zircon crystallization (see the text for explanations).

Download (103KB)
6. Fig. 5. Scheme of planetary evolution illustrating the release of metal from the magma ocean under the influence of atmospheric hydrogen (a) and the crystallization of zircon (diamond-shaped specks, see (b)) in late derivatives of magma that has intruded into the Earth's protocrust (b). Subscripts in (a): (g) – gas particles in the atmosphere, (diss) – volatile particles dissolved in the magma ocean.

Download (274KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».