Jadeitite in metalherzolite of the El’denyr Massif, Chukotka: Mechanism and setting of its formation
- Authors: Bazylev B.A.1, Ledneva G.V.2
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Geological Institute, Russian Academy of Sciences
- Issue: Vol 33, No 2 (2025)
- Pages: 43-70
- Section: Articles
- URL: https://journals.rcsi.science/0869-5903/article/view/276471
- DOI: https://doi.org/10.31857/S0869590325020033
- EDN: https://elibrary.ru/uhlurg
- ID: 276471
Cite item
Abstract
The paper presents the first data on the petrography, mineralogy, and geochemistry of jadeitites from the El’denyr massif, Chukotka, Russia, as well as host metalherzolites and amphibolite inclusions in the jadeitites. The jadeitite is composed of an association of jadeite, omphacite, analcime, and pectolite with a Ba-Ti-Si accessory mineral. The host metalherzolite is made of an association of olivine, antigorite, diopside, chlorite, ferrite-chromite, chromium magnetite, and accessory awaruite, heazlewoodite, and pentlandite. The jadeitite contains inclusions with a relict coarse-grained hypidiomorphic-granular texture, which are considered to be relics of the metasomatized protolith of the jadeitite. This protolith was probably high-temperature hydrothermal diopsidite. The inclusions show local recrystallization of primary diopside to aegirine-augite and pseudomorphic development of a fine-grained aggregate of amphiboles (several generations of richterite, actinolite, magnesiokatophorite, K-richterite, and eckermannite), omphacite, pectolite, analcime, phlogopite, accessory maucherite and heazlewoodite after diopside/aegirine-augite and an associated unidentified mineral. The protolith was transformed in several stages before the onset of jadeite crystallization, and these transformations included metasomatic recrystallization and a complete change in its texture. During the last stage, crystallization of the euhedral concentrically zoned jadeite with analcime and pectolite from fluid was accompanied by the recrystallization and dissolution of the last reworked relics of the protolith represented by high-calcium omphacite in microgranular omphacite-jadeite aggregates of jadeitite. The formation of jadeitites and the accompanying metamorphism of the host lherzolites occurred at 500°C and 8.5 kbar, which corresponds to P–T conditions typical of the metamorphism of mantle wedge peridotites in the "warm" subduction regime. The presence of jadeites in the El'denyr massif and high-pressure metamorphic rocks in the Ust’-Belaya massif, which were studied previously, allows us to consider the Ust’-Belaya terrane as a mélange of a subduction zone active in the Early–Middle Triassic that was deformed and disintegrated during its subsequent exhumation in the Cretaceous.
Full Text

About the authors
B. A. Bazylev
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: bbazylev@rambler.ru
доктор геолого-минералогических наук, ведущий научный сотрудник
Russian Federation, MoscowGalina V. Ledneva
Geological Institute, Russian Academy of Sciences
Email: bazylev@geokhi.ru
кандидат геолого-минералогических наук, ведущий научный сотрудник
Russian Federation, MoscowReferences
- Александров А.А. Покровные и чешуйчатые структуры в Корякском нагорье. М.: Наука, 1978. 122 с.
- Базылев Б.А., Леднева Г.В., Кононкова Н.Н. и др. Типизация перидотитов Усть-Бельского ультрамафит-мафитового массива (Чукотка) по составам минералов: предварительные результаты // Ультрабазит-базитовые комплексы складчатых областей и связанные с ними месторождения. Материалы 3-й Международной конференции. Екатеринбург: ИГГ УрО РАН, 2009. Т. 2. С. 73–76.
- Базылев Б.А., Леднева Г.В., Кононкова Н.Н. Минералогическая типизация и геодинамическая обстановка формирования перидотитов массива Эльденыр (Чукотка) // Магматизм и метаморфизм в истории Земли. Тез. докл. XI Всероссийского петрографического совещания. Екатеринбург: ИГГ УрО РАН, 2010. Т. 1. С. 72–73.
- Дмитренко Г.Г., Мочалов А.Г., Паланджян С.А. Петрология и платиноносность лерцолитовых массивов Корякского нагорья. Магадан: СВКНИИ ДВО АН СССР, 1990. 93 с.
- Киевленко E.Я. Геология самоцветов. М.: Земля: ЭКОСТ, 2001. 579 с.
- Леднева Г.В., Базылев Б.А., Лебедев В.В. и др. U-Pb возраст цирконов из габброидов Усть-Бельского мафит-ультрамафитового массива (Чукотка) и его интерпретация // Геохимия. 2012. Т. 50. № 1. С. 44–53.
- Марков М.С., Некрасов Г.Е., Паланджян С.А. Офиолиты и меланократовый фундамент Корякского нагорья / Очерки тектоники Корякского нагорья. М.: Наука, 1982. С. 30–70.
- Некрасов Г.Е., Заборская Н.Б., Ляпунов С.М. Допозднепалеозойские офиолиты запада Корякского нагорья – фрагменты океанического плато // Геотектоника. 2001. № 2. С. 41–63.
- Паланджян С.А. Лерцолитовые массивы офиолитов Анадырско-Корякского региона: геологическое строение и состав пород как показатели обстановок формирования // Литосфера. 2010. № 5. С. 3–19.
- Пинус Г.В., Велинский В.В., Леснов Ф.П. и др. Альпинотипные гипербазиты Анадырско-Корякской складчатой системы. Новосибирск: Наука, 1973. 320 с.
- Соколов С.Д. Аккреционная тектоника: понятийная база, проблемы и перспективы / Под ред. Д.В. Рундквиста. Проблемы глобальной геодинамики. Материалы теоретического семинара ОГГГГН РАН 2000–2001. Вып. 2. М.: РАН, 2003. С. 32–56.
- Angiboust S., Glodny J., Cambeses A. et al. Drainage of subduction interface fluids into the forearc mantle evidenced by a pristine jadeitite network (Polar Urals) // J. Metamorph. Geol. 2021a. V. 39. P. 473–500.
- Angiboust S., Munoz-Montecinos J., Cambeses A. et al. Jolts in the Jade factory: A route for subduction fluids and their implications for mantle wedge seismicity // Earth-Sci. Rev. 2021b. V. 220. 103720.
- Akizawa N., Arai S. Petrology of mantle diopsidite from Wadi Fizh, northern Oman ophiolite: Cr and REE mobility by hydrothermal solution // Isl. Arc. 2014. V. 23. No 4. P. 312–323.
- Bazylev B.A., Popević A., Karamata S. et al. Mantle peridotites from the Dinaridic ophiolite belt and the Vardar zone western belt, central Balkan: a petrological comparison // Lithos. 2009. V. 108. No 1–4. P. 37–71.
- Goto A., Kunugiza K., Miyajima H. Phase relation in the NaAlSiO4-SiO2-H2O system for the hydrothermal precipitation of jadeite, albite, natrolite, and analcime in jadeitite of the Itoigawa-Omi area, Japan // J. Mineral. Petrol. Sci. 2017. V. 112. P. 271–280.
- Green E., Holland T., Powell R. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks // Amer. Mineral. 2007. V. 92. P. 1181–1189.
- Harlow G.E. Jadeitites, albitites and related rocks from the Motagua fault zone, Guatemala // J. Metamorph. Geol. 1994. V. 12. P. 49–68.
- Harlow G.E., Sorensen S.S. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections // Int. Geol. Rev. 2005. V. 47. P. 113–146.
- Harlow G.E., Tsujimori T., Sorensen S.S. Jadeitites and plate tectonics // Ann. Rev. Earth Planet. Sci. 2015. V. 43. P. 105–138.
- Hertvig A., Maresh W.V., Schertl H.-P. Jadeitite and related rocks in serpentinite mélanges from the Rio San Juan Complex, Dominican Republic: evidence for both isochemical replacement and metasomatic desilication of igneous protoliths with fluid-assisted jadeite growth // Russian Geology and Geophysics. 2021. V. 62. No 5. C. 496–524.
- Holland T.J.B., Powell R. An internally-consistent thermodynamic data set for phases of petrological interest // J. Metam. Geol. 1998. V. 16. P. 309–343.
- Jarosewich E.J., Nelen J.A., Norberg J.A. Reference samples for electron microprobe analysis // Geostandards Newsletter. 1980. V. 4. P. 43–47.
- Khedr M.Z., Arai S. Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: evidence from the Happo-O'ne metaperidotites (Japan) // Contrib. Mineral. Petrol. 2010. V. 159. P. 137–157.
- Khedr M.Z., Arai S., Tamura A., Morishita T. Clinopyroxenes in high-P metaperidotites from Happo-O’ne, central Japan: implications for wedge transversal chemical change of slab-derived fluids // Lithos. 2010. V. 119. P. 439–456.
- Kunugiza K., Nakamura E., Goto A. et al. In situ U-Pb zircon age dating deciphering the formation event of the omphacite growth over relict edenitic pargasite in omphacite–bearing jadeitite of the Itoigawa–Omi area of the Hida–Gaien belt, central Japan // J. Mineral. Petrol. Sci. 2017. V. 112. P. 256–270.
- Leake B.E., Woolley A.R., Arps C.E.S. et al. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Commission on New Minerals and Mineral Names // Mineral. Mag. 1997. V. 61. P. 295–321.
- Ledneva G.V., Layer P.W., Bazylev B.A. et al. Early-middle Triassic basic magmatism and metamorphism of ultramafic-mafic complexes of the Ust’-Belaya terrane (central Chukotka, NE Russia): 40Ar/39Ar ages, petrological and geochemical data, geodynamic interpretations // Int. Geol. Rev. 2019. V. 61. No 9. P. 1052–1070.
- Liou J.G. Analcime equilibria // Lithos. 1971. V. 4. P. 389–402.
- Liou J.G., Tsujimori T., Zhang R.Y. et al. Global UHP metamorphism and continental subduction/collision: the Himalayan model // Int. Geol. Rev. 2004. V. 46. P. 1–27.
- McDonough W.F., Sun S.-S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
- Meng F.C., Yang H.-J., Makeev A.B. et al. Jadeitite in the Syum-Keu ultramafic complex from Polar Urals, Russia: Insights into fluid activity in subduction zones // Eur. J. Mineral. 2016. V. 28. No 6. P. 1079–1097.
- Moiseev A.V., Gushchina M.Yu., Sokolov S.D. et al. Late Paleozoic – Cretaceous paleotectonic reconstructions of NE Asia: Insights from U-Pb dating detrital zircons from sandstones in the Algan and Ust’-Belaya terranes (NE Russia) // J. Asian Earth Sci. 2023. V. 252. 105685.
- Morimoto N., Fabries J., Ferguson A.K. et al. Nomenclature of pyroxenes // Amer. Mineral. 1988. V. 73. P. 1123–1133.
- Morishita T., Arai S., Ishida Y. Trace element compositions of jadeite (+omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: implications for fluid processes in subduction zones // Isl. Arc. 2007. V. 16. P. 40–56.
- Neuhoff P.S., Hovis G.L., Balassone G., Stebbins J.F. Thermodynamic properties of analcime solid solutions // Amer. J. Sci. 2004. V. 304. P. 21–66.
- Nozaka T. Compositional variation of olivine related to high-temperature serpentinization of peridotites: Evidence from the Oeyama ophiolite // J. Mineral. Petrol. Sci. 2018. V. 113. P. 219–231.
- Palandzhyan S.A., Dmitrenko G.G. Ophiolitic Complexes and associated rocks in the Ust-Belaya Mountains and Algan Ridge, Russian Far East. US Geological Survey Open-File Report, OF 92-20-1, 1996. P. 4.
- Python M., Ceuleneer G., Ishida Y. et al. Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres // Earth Planet. Sci. Lett. 2007. V. 255. No 3–4. P. 289–305.
- Sokolov S.D., Luchitskaya M.V., Silantyev S.A. et al. Ophiolites in accretionary complexes along the Early Cretaceous margin of North-East Asia: age, composition, and geodynamic divercity // Eds. Y. Dilek, P.T. Robinson. Ophiolites in Earth History. Geol. Soc. London Spec. Publ., 2003. V. 218. P. 619–664.
- Sorensen S., Harlow G.E., Rumble D., III. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence // Amer. Mineral. 2006. V. 91. P. 979–996.
- Shi G.H., Cui W.Y., Tropper P. et al. The petrology of a complex sodic and sodic–calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma // Contrib. Mineral. Petrol. 2003. V. 145. P. 355–376.
- Shi G.H., Cui W.Y., Cao S.M. et al. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite // J. Geol. Soc. London. 2008. V. 165. P. 221–234.
- Shi G., Harlow G.E., Wang J. et al. Mineralogy of jadeitite and related rocks from Myanmar: a review with new data // Eur. J. Mineral. 2012. V. 24. P. 345–370.
- Trommsdorff V., Evans B.W. Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy) // Amer. J. Sci. 1972. V. 272. P. 423–437.
- Trommsdorff V., Lopez Sanchez-Vizcaino V., Gomez-Pugnaire M.T., Muentener O. High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain // Contrib. Mineral. Petrol. 1998. V. 132. P. 139–148.
- Tsujimori T., Harlow G.E. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review // Eur. J. Mineral. 2012. V. 24. P. 371–390.
- Warr L.N. IMA-CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. No 3. P. 291–320.
- Wen J., Shi G., Xing B. et al. Unique interstitial textures within coarse-grained jadeitite from Kazakhstan and their significance in locality identification // Minerals. 2023. V. 13. https://doi.org/10.3390/min13040513
- Yui T.F., Maki K., Usuki T. et al. Genesis of Guatemala jadeitite and related fluid characteristics: insight from zircon // Chem. Geol. 2010. V. 270. P. 45–55.
Supplementary files
