Jadeitite in metalherzolite of the El’denyr Massif, Chukotka: Mechanism and setting of its formation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the first data on the petrography, mineralogy, and geochemistry of jadeitites from the El’denyr massif, Chukotka, Russia, as well as host metalherzolites and amphibolite inclusions in the jadeitites. The jadeitite is composed of an association of jadeite, omphacite, analcime, and pectolite with a Ba-Ti-Si accessory mineral. The host metalherzolite is made of an association of olivine, antigorite, diopside, chlorite, ferrite-chromite, chromium magnetite, and accessory awaruite, heazlewoodite, and pentlandite. The jadeitite contains inclusions with a relict coarse-grained hypidiomorphic-granular texture, which are considered to be relics of the metasomatized protolith of the jadeitite. This protolith was probably high-temperature hydrothermal diopsidite. The inclusions show local recrystallization of primary diopside to aegirine-augite and pseudomorphic development of a fine-grained aggregate of amphiboles (several generations of richterite, actinolite, magnesiokatophorite, K-richterite, and eckermannite), omphacite, pectolite, analcime, phlogopite, accessory maucherite and heazlewoodite after diopside/aegirine-augite and an associated unidentified mineral. The protolith was transformed in several stages before the onset of jadeite crystallization, and these transformations included metasomatic recrystallization and a complete change in its texture. During the last stage, crystallization of the euhedral concentrically zoned jadeite with analcime and pectolite from fluid was accompanied by the recrystallization and dissolution of the last reworked relics of the protolith represented by high-calcium omphacite in microgranular omphacite-jadeite aggregates of jadeitite. The formation of jadeitites and the accompanying metamorphism of the host lherzolites occurred at 500°C and 8.5 kbar, which corresponds to PT conditions typical of the metamorphism of mantle wedge peridotites in the "warm" subduction regime. The presence of jadeites in the El'denyr massif and high-pressure metamorphic rocks in the Ust’-Belaya massif, which were studied previously, allows us to consider the Ust’-Belaya terrane as a mélange of a subduction zone active in the Early–Middle Triassic that was deformed and disintegrated during its subsequent exhumation in the Cretaceous.

Full Text

Restricted Access

About the authors

B. A. Bazylev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: bbazylev@rambler.ru

доктор геолого-минералогических наук, ведущий научный сотрудник

Russian Federation, Moscow

Galina V. Ledneva

Geological Institute, Russian Academy of Sciences

Email: bazylev@geokhi.ru

кандидат геолого-минералогических наук, ведущий научный сотрудник

Russian Federation, Moscow

References

  1. Александров А.А. Покровные и чешуйчатые структуры в Корякском нагорье. М.: Наука, 1978. 122 с.
  2. Базылев Б.А., Леднева Г.В., Кононкова Н.Н. и др. Типизация перидотитов Усть-Бельского ультрамафит-мафитового массива (Чукотка) по составам минералов: предварительные результаты // Ультрабазит-базитовые комплексы складчатых областей и связанные с ними месторождения. Материалы 3-й Международной конференции. Екатеринбург: ИГГ УрО РАН, 2009. Т. 2. С. 73–76.
  3. Базылев Б.А., Леднева Г.В., Кононкова Н.Н. Минералогическая типизация и геодинамическая обстановка формирования перидотитов массива Эльденыр (Чукотка) // Магматизм и метаморфизм в истории Земли. Тез. докл. XI Всероссийского петрографического совещания. Екатеринбург: ИГГ УрО РАН, 2010. Т. 1. С. 72–73.
  4. Дмитренко Г.Г., Мочалов А.Г., Паланджян С.А. Петрология и платиноносность лерцолитовых массивов Корякского нагорья. Магадан: СВКНИИ ДВО АН СССР, 1990. 93 с.
  5. Киевленко E.Я. Геология самоцветов. М.: Земля: ЭКОСТ, 2001. 579 с.
  6. Леднева Г.В., Базылев Б.А., Лебедев В.В. и др. U-Pb возраст цирконов из габброидов Усть-Бельского мафит-ультрамафитового массива (Чукотка) и его интерпретация // Геохимия. 2012. Т. 50. № 1. С. 44–53.
  7. Марков М.С., Некрасов Г.Е., Паланджян С.А. Офиолиты и меланократовый фундамент Корякского нагорья / Очерки тектоники Корякского нагорья. М.: Наука, 1982. С. 30–70.
  8. Некрасов Г.Е., Заборская Н.Б., Ляпунов С.М. Допозднепалеозойские офиолиты запада Корякского нагорья – фрагменты океанического плато // Геотектоника. 2001. № 2. С. 41–63.
  9. Паланджян С.А. Лерцолитовые массивы офиолитов Анадырско-Корякского региона: геологическое строение и состав пород как показатели обстановок формирования // Литосфера. 2010. № 5. С. 3–19.
  10. Пинус Г.В., Велинский В.В., Леснов Ф.П. и др. Альпинотипные гипербазиты Анадырско-Корякской складчатой системы. Новосибирск: Наука, 1973. 320 с.
  11. Соколов С.Д. Аккреционная тектоника: понятийная база, проблемы и перспективы / Под ред. Д.В. Рундквиста. Проблемы глобальной геодинамики. Материалы теоретического семинара ОГГГГН РАН 2000–2001. Вып. 2. М.: РАН, 2003. С. 32–56.
  12. Angiboust S., Glodny J., Cambeses A. et al. Drainage of subduction interface fluids into the forearc mantle evidenced by a pristine jadeitite network (Polar Urals) // J. Metamorph. Geol. 2021a. V. 39. P. 473–500.
  13. Angiboust S., Munoz-Montecinos J., Cambeses A. et al. Jolts in the Jade factory: A route for subduction fluids and their implications for mantle wedge seismicity // Earth-Sci. Rev. 2021b. V. 220. 103720.
  14. Akizawa N., Arai S. Petrology of mantle diopsidite from Wadi Fizh, northern Oman ophiolite: Cr and REE mobility by hydrothermal solution // Isl. Arc. 2014. V. 23. No 4. P. 312–323.
  15. Bazylev B.A., Popević A., Karamata S. et al. Mantle peridotites from the Dinaridic ophiolite belt and the Vardar zone western belt, central Balkan: a petrological comparison // Lithos. 2009. V. 108. No 1–4. P. 37–71.
  16. Goto A., Kunugiza K., Miyajima H. Phase relation in the NaAlSiO4-SiO2-H2O system for the hydrothermal precipitation of jadeite, albite, natrolite, and analcime in jadeitite of the Itoigawa-Omi area, Japan // J. Mineral. Petrol. Sci. 2017. V. 112. P. 271–280.
  17. Green E., Holland T., Powell R. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks // Amer. Mineral. 2007. V. 92. P. 1181–1189.
  18. Harlow G.E. Jadeitites, albitites and related rocks from the Motagua fault zone, Guatemala // J. Metamorph. Geol. 1994. V. 12. P. 49–68.
  19. Harlow G.E., Sorensen S.S. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections // Int. Geol. Rev. 2005. V. 47. P. 113–146.
  20. Harlow G.E., Tsujimori T., Sorensen S.S. Jadeitites and plate tectonics // Ann. Rev. Earth Planet. Sci. 2015. V. 43. P. 105–138.
  21. Hertvig A., Maresh W.V., Schertl H.-P. Jadeitite and related rocks in serpentinite mélanges from the Rio San Juan Complex, Dominican Republic: evidence for both isochemical replacement and metasomatic desilication of igneous protoliths with fluid-assisted jadeite growth // Russian Geology and Geophysics. 2021. V. 62. No 5. C. 496–524.
  22. Holland T.J.B., Powell R. An internally-consistent thermodynamic data set for phases of petrological interest // J. Metam. Geol. 1998. V. 16. P. 309–343.
  23. Jarosewich E.J., Nelen J.A., Norberg J.A. Reference samples for electron microprobe analysis // Geostandards Newsletter. 1980. V. 4. P. 43–47.
  24. Khedr M.Z., Arai S. Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: evidence from the Happo-O'ne metaperidotites (Japan) // Contrib. Mineral. Petrol. 2010. V. 159. P. 137–157.
  25. Khedr M.Z., Arai S., Tamura A., Morishita T. Clinopyroxenes in high-P metaperidotites from Happo-O’ne, central Japan: implications for wedge transversal chemical change of slab-derived fluids // Lithos. 2010. V. 119. P. 439–456.
  26. Kunugiza K., Nakamura E., Goto A. et al. In situ U-Pb zircon age dating deciphering the formation event of the omphacite growth over relict edenitic pargasite in omphacite–bearing jadeitite of the Itoigawa–Omi area of the Hida–Gaien belt, central Japan // J. Mineral. Petrol. Sci. 2017. V. 112. P. 256–270.
  27. Leake B.E., Woolley A.R., Arps C.E.S. et al. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Commission on New Minerals and Mineral Names // Mineral. Mag. 1997. V. 61. P. 295–321.
  28. Ledneva G.V., Layer P.W., Bazylev B.A. et al. Early-middle Triassic basic magmatism and metamorphism of ultramafic-mafic complexes of the Ust’-Belaya terrane (central Chukotka, NE Russia): 40Ar/39Ar ages, petrological and geochemical data, geodynamic interpretations // Int. Geol. Rev. 2019. V. 61. No 9. P. 1052–1070.
  29. Liou J.G. Analcime equilibria // Lithos. 1971. V. 4. P. 389–402.
  30. Liou J.G., Tsujimori T., Zhang R.Y. et al. Global UHP metamorphism and continental subduction/collision: the Himalayan model // Int. Geol. Rev. 2004. V. 46. P. 1–27.
  31. McDonough W.F., Sun S.-S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
  32. Meng F.C., Yang H.-J., Makeev A.B. et al. Jadeitite in the Syum-Keu ultramafic complex from Polar Urals, Russia: Insights into fluid activity in subduction zones // Eur. J. Mineral. 2016. V. 28. No 6. P. 1079–1097.
  33. Moiseev A.V., Gushchina M.Yu., Sokolov S.D. et al. Late Paleozoic – Cretaceous paleotectonic reconstructions of NE Asia: Insights from U-Pb dating detrital zircons from sandstones in the Algan and Ust’-Belaya terranes (NE Russia) // J. Asian Earth Sci. 2023. V. 252. 105685.
  34. Morimoto N., Fabries J., Ferguson A.K. et al. Nomenclature of pyroxenes // Amer. Mineral. 1988. V. 73. P. 1123–1133.
  35. Morishita T., Arai S., Ishida Y. Trace element compositions of jadeite (+omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: implications for fluid processes in subduction zones // Isl. Arc. 2007. V. 16. P. 40–56.
  36. Neuhoff P.S., Hovis G.L., Balassone G., Stebbins J.F. Thermodynamic properties of analcime solid solutions // Amer. J. Sci. 2004. V. 304. P. 21–66.
  37. Nozaka T. Compositional variation of olivine related to high-temperature serpentinization of peridotites: Evidence from the Oeyama ophiolite // J. Mineral. Petrol. Sci. 2018. V. 113. P. 219–231.
  38. Palandzhyan S.A., Dmitrenko G.G. Ophiolitic Complexes and associated rocks in the Ust-Belaya Mountains and Algan Ridge, Russian Far East. US Geological Survey Open-File Report, OF 92-20-1, 1996. P. 4.
  39. Python M., Ceuleneer G., Ishida Y. et al. Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres // Earth Planet. Sci. Lett. 2007. V. 255. No 3–4. P. 289–305.
  40. Sokolov S.D., Luchitskaya M.V., Silantyev S.A. et al. Ophiolites in accretionary complexes along the Early Cretaceous margin of North-East Asia: age, composition, and geodynamic divercity // Eds. Y. Dilek, P.T. Robinson. Ophiolites in Earth History. Geol. Soc. London Spec. Publ., 2003. V. 218. P. 619–664.
  41. Sorensen S., Harlow G.E., Rumble D., III. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence // Amer. Mineral. 2006. V. 91. P. 979–996.
  42. Shi G.H., Cui W.Y., Tropper P. et al. The petrology of a complex sodic and sodic–calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma // Contrib. Mineral. Petrol. 2003. V. 145. P. 355–376.
  43. Shi G.H., Cui W.Y., Cao S.M. et al. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite // J. Geol. Soc. London. 2008. V. 165. P. 221–234.
  44. Shi G., Harlow G.E., Wang J. et al. Mineralogy of jadeitite and related rocks from Myanmar: a review with new data // Eur. J. Mineral. 2012. V. 24. P. 345–370.
  45. Trommsdorff V., Evans B.W. Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy) // Amer. J. Sci. 1972. V. 272. P. 423–437.
  46. Trommsdorff V., Lopez Sanchez-Vizcaino V., Gomez-Pugnaire M.T., Muentener O. High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain // Contrib. Mineral. Petrol. 1998. V. 132. P. 139–148.
  47. Tsujimori T., Harlow G.E. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review // Eur. J. Mineral. 2012. V. 24. P. 371–390.
  48. Warr L.N. IMA-CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. No 3. P. 291–320.
  49. Wen J., Shi G., Xing B. et al. Unique interstitial textures within coarse-grained jadeitite from Kazakhstan and their significance in locality identification // Minerals. 2023. V. 13. https://doi.org/10.3390/min13040513
  50. Yui T.F., Maki K., Usuki T. et al. Genesis of Guatemala jadeitite and related fluid characteristics: insight from zircon // Chem. Geol. 2010. V. 270. P. 45–55.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Simplified scheme of the geological structure of the Ust-Belsky and northern Algan Mountains (Ledneva et al., 2012); compiled using original data and based on the materials of (Aleksandrov, 1978; Nekrasov et al., 2001; Sokolov et al., 2003). 1 - autochthon, volcanogenic-sedimentary deposits of the Algan zone (Upper Jurassic - Lower Cretaceous); 2-6 - allochthon; 2 - sedimentary deposits (Upper Jurassic - Lower Cretaceous), 3 - limestones (Lower Carboniferous), volcanogenic and terrigenous deposits (Middle - Upper Devonian); 4, 5 - rocks of the Ust-Belsky and Eldenyrsky massifs, including 4 - restitic and cumulative (undivided) ultramafic rocks and ophiolitic mélanges of unknown age, 5 - mainly gabbroids (Late Riphean, Vendian-Cambrian boundary); 6 - neoautochthon, sedimentary strata and molasses (Cenomanian, Oligocene-Miocene); 7 - inferred thrust separating the autochthon and allochthon formations; 8 - large faults; 9 - stratigraphic contacts. The sampling locations of jadeitite and previously studied (Ledneva et al., 2019) high-P metamorphic rocks are marked with arrows: 1 - sample EL8-78, jadeitite, 2 - sample UB8-13, garnet amphibolite, 3 – sample UВ7-60, albite-zoisite-paragonite-pargasite rock. The inset shows the position of the Ust-Belsky terrane on the tectonic zoning scheme of the region (Sokolov, 2003); the location of ophiolite complexes and mélanges is given according to (Markov et al., 1982): 1 – Paleogene–Quaternary sediments of the cover, 2–5 – terranes with prevalence of complexes: 2 – island-arc, 3 – accretionary prisms, 4 – oceanic, including volcanic arcs, 5 – terrigenous; 6 – ultramafic-mafic complexes, mainly ophiolites and mélanges; 7 – strike-slip faults; 8 – thrust faults. Terranes: UB – Ust-Belsky, GA – Ganychalansky, AM – Ainynsko-Mainitsky, AL – Algansky, VL – Velikorechensky, MA – Mainitsky, AV – Alkatvaamsky, EK – Ekonaisky, YAN – Yanranaisky, UK – Ukelayatsky and OL – Olyutorsky; OCHVP – Okhotsk-Chukotka volcanic belt.

Download (937KB)
3. Fig. 2. Structure of jadeitite and inclusions in it: (a, c) – in transmitted light; (b, d) – in polarized light; (d, e) – in backscattered electrons (BSE). The following abbreviations are used in this figure and in the text (Warr, 2021): Act – actinolite, Aeg-Aug – aegirine-augite, Anl – analcite, Atg – antigorite, Awr – awaruite, Di – diopside, Eck – eckermannite, Fchr – ferrite-chromite, Hzl – heazlewoodite, Jd – jadeite, K-Rct – K-bearing richterite, Mktp – magnesiokatophorite, Mag – magnetite, Muc – maucherite, Ol – olivine, Omp – omphacite, Pct – pectolite, Pn – pentlandite, Po – pyrrhotite, Px – pyroxene, Rct – richterite, Spl – spinel.

Download (1024KB)
4. Fig. 3. Details of the jadeitite structure (BSE): (a) – microgranular omphacite-jadeite aggregates in the fine-to-medium-grained jadeite-analcime-pectolite groundmass of jadeitite; (b) – prismatic pectolite grains in analcime; (c) – aggregate of euhedral concentrically zoned jadeite grains with analcime interstices growing on the microgranular omphacite-jadeite aggregate; (d) – microstructure of the omphacite-jadeite aggregate with visible resorption of omphacite grains; (d) – coarse prismatic omphacite grain with jadeite inclusions at the edge of the omphacite-jadeite aggregate; (e) – shape of accessory Ba-Ti-Si mineral precipitates.

Download (980KB)
5. Fig. 4. Pyroxene compositions. Na-Omp and Ca-Omp from jadeitite, the rest from inclusions in jadeitite. Compositions of jadeites (not containing the aegirine component) are not plotted.

Download (147KB)
6. Fig. 5. Relic structure of inclusion in jadeitite: (a, b) – large weakly replaced relics of diopside; (c–e) – “melanocratic” (MP) and “leucocratic” (LP) pseudomorphoses. (a, c, d) – in transmitted light, (d) – in polarized light, (b, e) – in BSE.

Download (983KB)
7. Fig. 6. Compositions of amphiboles from inclusions in jadeitite.

Download (133KB)
8. Fig. 7. The nature of diopside and aegirine-augite replacement: (a) – development of magnesiokatophorite grains and pectolite veinlets over diopside and aegirine-augite; (b) – diopside replacement by omphacite, pectolite, eckermannite, richterite; (c) – fragment of Fig. 7b; (d) – diopside replacement by pectolite, eckermannite, richterite, actinolite, phlogopite, omphacite. (a, b, c) – BSE images, (d) – element distribution map.

Download (926KB)
9. Fig. 8. Structure of “melanocratic” pseudomorphs after diopside and aegirine-augite: (a) – pectolite-omphacite-amphibole pseudomorph with relics of aegirine-augite and amphibole idioblasts, on the left – “leucocratic” pseudomorph; (b) – richterite (top) and omphacite-richterite (center) pseudomorphoses, on the lower left – “leucocratic” pseudomorph; (c) – fragment of Fig. 8b, replacement of aegirine-augite by pectolite, omphacite and richterite; (d) – omphacite-richterite pseudomorphosis, on the right – “leucocratic” pseudomorph; (d) – fragment of Fig. 8g, relics of diopside in omphacite and omphacite in richterite; actinolite and richterite Rct1 in the cores of amphibole idioblasts; (e) – fragment of Fig. 8g, relics of diopside and Ca-omphacite in Na-omphacite; (g) – map of element distribution; (a–c, d–e) – images in BSE.

Download (951KB)
10. Fig. 9. Structure of analcime-containing “melanocratic” pseudomorphs after diopside: (a) – “melanocratic” pseudomorph (Omp-Rct-Anl with relics of Act and Aeg-Aug), top left – “leucocratic” pseudomorph (K-Rct, Mktp, Rct, Act); (b) – fragment of Fig. 9a, zonal and non-zonal amphibole idioblasts in omphacite, partially replaced by analcime along cleavage; (c) – fragment of Fig. 9a, homoaxial pseudomorph of Na-omphacite with relics of aegirine-augite and Ca-omphacite, homoaxial richterite pseudomorph, zonal and non-zonal amphibole idioblasts, replacement of pseudomorphic omphacite and richterite by analcime; (g) – zonal idioblasts of amphiboles with Mktp and Rct1 in the cores; (a) – element distribution map; (b–d) – BSE images.

Download (1023KB)
11. Fig. 10. Structure of “leucocratic” pseudomorphs: (a) – amphibole pseudomorph with pectolite; (b) – amphibole-omphacitic pseudomorph; (c) – amphibole-omphacitic pseudomorph with analcime; (d) – amphibole-pectolite pseudomorph with analcime; (a) – element distribution map; (b–d) – BSE images.

Download (993KB)
12. Fig. 11. Structure of the contact area of ​​the inclusion with jadeitite: (a) – in transmitted light; (b) – in polarized light; (c, d) – on element distribution maps; (d) – fragment of Fig. 11g, replacement of a large prismatic omphacite grain in the outer rim of the inclusion along cleavage with analcime and jadeite; (e) – fragment of Fig. 11g, an aggregate of small isometric omphacite grains with analcime interstices and veinlets in the area of ​​the outer rim of the inclusion between large prismatic omphacite grains; (d, f) – BSE images.

Download (982KB)
13. Fig. 12. Structure of metalherzolite (sample EL8-77): (a) – partially recrystallized and replaced olivine, pseudomorphoses after pyroxenes and chrome-spinelides; (b) – chlorite (with antigorite) rim around replaced chrome-spinelide, diopside idioblasts and relics of recrystallized olivine in antigorite; (c) – diopside-antigorite-chlorite pseudomorphosis after pyroxene; (d) – replacement of olivine by antigorite along cleavage, relict areas of primary olivine; (d) – pseudomorph of Cr-magnetite with chlorite and antigorite laths after primary chrome-spinelide; (e) – fragment of Fig. 12e, ferrite-chromite precipitations in chromium magnetite. (b) – element distribution map, (a, c–e) – BSE images. Mineral abbreviations in brackets in Fig. 12a – substituted primary minerals.

Download (916KB)
14. Fig. 13. Spectrum of rare element contents in jadeitite (sample EL8-78), normalized to the primitive mantle (McDonough, Sun, 1995). Composition field of jadeitites from Myanmar according to (Shi et al., 2008).

Download (147KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».