Associations and formation conditions of a body of melilite leucite clinopyroxenite (Purtovino, Vologda oblast, Russia): an alkaline-ultrabasic paralava

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A novel petrogenetic scheme is discussed for the formation of a melilite leucite clinopyroxenite body from an alkaline–ultrabasic paralava in the Purtovino area. Its protolith was likely a mixture of Upper Permian sedimentary rocks (aleurolite, marl, among others). Degassing, evaporation, and thermal (contact) metamorphism have significantly influenced the petrogenesis to produce a wide diversity of species present in mineral associations. The crystallization of paralava in a shallow setting was accompanied by an intense degassing and vesiculation of the melt, causing locally high porosity in the rock. An elevated degree of oxidation of the initial melt and progressive growth of fO2 were likely related to the H2 loss during the vesiculation and dissociation of H2O. Consequently, ferrian magnesiochromite (Mchr) and chromian spinel (Fe3+-enriched) were the early phases to crystallize; they were followed by members of the magnesioferrite–magnetite series. In situ melting of quartz-bearing and carbonate–clay rocks led to the development of domains of peralkaline felsic glass that surround partially resorbed quartz grains. Numerous grains of wollastonite and rare larnite formed during contact pyrometamorphism. The alkalis increased progressively during crystallization, with a notable enrichment in Na (up to 0.30 apfu) in the akermanite–gehlenite series. The formation of leucite following melilite is indicated. Euhedral grains of Cpx display concentric cryptic zonation, with a zone of extreme Mg enrichment due to a local deficit in Fe2+. As consequences of the continuing rise in fO2, esseneite crystallized in the rim of zoned clinopyroxene. Two schemes of coupled substitution account for the composition of Cpx grains analyzed in various textural relationships: Mg2+ + Si4+ → (Fe3+ + Al3+) and (Ti4+ + Al3+) + (Na + + K)+ → 2Mg2+ + Si4+. The pre-existing grains of olivine (associated with Mchr) were likely replaced completely by sepiolite–palygorskite associated with brownmillerite and its probable Fe3+-dominant counterpart, srebrodolskite. The investigated layer of alkaline microclinopyroxenite is unique in the Russian Plate, and a search is thus required to recognize other pyrogenic products. Also, further research is required to evaluate the contents and volumes of coal (or other sources of hydrocarbons) that could cause spontaneous and long-lasting combustion to form the considerable volume of paralava recognized in the Purtovino area.

Full Text

Restricted Access

About the authors

A. Y. Barkov

Cherepovets State University

Email: anderez@mail.ru

Research Laboratory of Industrial and Ore Mineralogy

Russian Federation, Cherepovets

A. A. Nikiforov

Cherepovets State University

Email: anderez@mail.ru

Research Laboratory of Industrial and Ore Mineralogy

Russian Federation, Cherepovets

R. F. Martin

McGill University

Email: anderez@mail.ru

Department of Earth and Planetary Sciences

Canada, Montreal

V. N. Korolyuk

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Science

Email: anderez@mail.ru
Russian Federation, Novosibirsk

S. A. Silyanov

Siberian Federal University

Email: anderez@mail.ru

Institute of Non-Ferrous Metals

Russian Federation, Krasnoyarsk

B. M. Lobastov

Siberian Federal University

Author for correspondence.
Email: anderez@mail.ru

Institute of Non-Ferrous Metals

Russian Federation, Krasnoyarsk

References

  1. Авдошенко Н.Д., Труфанов А.И. Геологическая история и геологическое строение Вологодской области. Вологда: Изд-во ВГПИ, 1989. 72 с.
  2. Буслович А.Л. О мезозойской тектонической и магматической активизации на севере Московской синеклизы (в пределах Вологодской области) // Геология и минеральные ресурсы Вологодской области. Вологда: Русь, 2000. С. 72–78.
  3. Верзилин Н.Н., Калмыкова Н.А., Суслов Г.А. Крупные песчаные линзы в верхнепермских отложениях севера Московской синеклизы // Тр. СПб. Об-ва Естествоиспытателей. 1993. Т. 83. № 2. 112 с.
  4. Когарко Л.Н. Щелочной магматизм в истории Земли // Тектоника и геодинамика. СПб.: Изд-во ВСЕГЕИ, 2004. С. 76–81.
  5. Королюк В.Н., Нигматулина Е.Н., Усова Л.В. О точности определения состава основных породообразующих силикатов и оксидов на микроанализаторе JXA-8100 // Журнал аналитической химии. 2009. Т. 64. № 10. С. 1070–1074.
  6. Лаврентьев Ю.Г., Королюк В.Н., Усова Л.В. и др. Рентгеноспектральный микроанализ породообразующих минералов на микроанализаторе JXA-8100 // Геология и геофизика. 2015. Т. 56. № 10. С. 1813–1824.
  7. Перетяжко И.С., Савина Е.А., Хромова Е.А. и др. Уникальные клинкеры и паралавы нового Нилгинского пирометаморфического комплекса в Центральной Монголии: минералого-геохимические особенности, условия формирования // Петрология. 2018. Т. 26. № 2. С. 178–210.
  8. Пирогенный метаморфизм // Ред. Э.В. Сокол, Н.В. Максимова, Е.Н. Нигматулина, В.В. Шарыгин, В.М. Калугин. Новосибирск: СО РАН, 2005. 284 с.
  9. Савина Е.А., Перетяжко И.С., Хромова Е.А. и др. Плавленые породы (клинкеры и паралавы) пирометаморфического комплекса Хамарин-Хурал-Хид, Восточная Монголия: минералогия, геохимия, процессы образования // Петрология. 2020. Т. 28. № 5. С. 482–510.
  10. Савина Е.А., Перетяжко И.С. Условия и процессы формирования кристобалитового клинкера, железистых и мелилит-нефелиновых паралав в пирометаморфическом комплексе Хамарин-Хурал-Хид, Восточная Монголия // Геология и геофизика. 2023.
  11. https://doi.org/10.15372/GIG2023144
  12. Труфанов А.И., Масайтис В.Л. Первая находка раннемезозойских щелочных ультраосновных магматических пород на севере Русской плиты // Региональная геология и металлогения. 2007. № 30–31. С. 57–61.
  13. Чесноков Б.В., Баженова Л.Ф. Сребродольскит Ca2Fe2O5 – новый минерал // Зап. ВМО. 1985. Т. 114. № 2. С. 195–199.
  14. Шацкий В.С. Ксенолит фассаит-гранат-анортитовой породы из кимберлитовой трубки Удачная (Якутия) // Докл. АН СССР. 1983. Т. 272. № 1. С. 188–192.
  15. Якубович О.В., Заякина Н.В., Олейников О.Б. и др. Эссенеит из ксенолитов в дацитовых лавах Лено-Вилюйского водораздела, Якутия: кристаллическая структура и генезис // Зап. РМО. 2017. Т. 146. № 5. С. 105–115.
  16. Alapieti T.T., Kujanpaa J., Lahtinen J.J. et al. The Kemi strati- form chromitite deposit, northern Finland // Econ. Geol. 1989. V. 84. P. 1057–1077.
  17. Barkov A.Y., Martin R.F. Anomalous Cr-rich zones in sector-zoned clinopyroxene macrocrysts in gabbro, Mont Royal, Montreal, Quebec, Canada // Can. Mineral. 2015. V. 53. P. 895–910.
  18. Barkov A.Y., Korolyuk V.N., Barkova L.P. et al. Double-front crystallization in the Chapesvara ultramafic subvolcanic complex, Serpentinite Belt, Kola Peninsula, Russia // Minerals. 2019. V. 10. P. 14.
  19. Barkov A.Y., Nikiforov A.A., Barkova L.P. et al. Zones of PGE–chromite mineralization in relation to crystallization of the Pados-Tundra ultramafic complex, Serpentinite Belt, Kola Peninsula, Russia // Minerals. 2021а. V. 11. P. 68.
  20. Barkov A.Y., Nikiforov A.A., Korolyuk V.N. et al. The chromian spinels of the Lyavaraka ultrabasic complex, Serpentinite belt, Kola Peninsula, Russia: patterns of zoning, hypermagnesian compositions, and early oxidation // Can. Mineral. 2021b. V. 59. P. 1–17.
  21. Barkov A.Y., Nikiforov A.A., Korolyuk V.N. et al. The Lyavaraka ultrabasic complex, Serpentinite Belt, Kola Peninsula, Russia // Geosciences. 2022. V. 12. P. 323.
  22. Bindi L., Cellai D., Melluso L. et al. Crystal chemistry of clinopyroxene from alkaline undersaturated rocks of the Monte Vulture Volcano, Italy // Lithos. 1999. V. 46. P. 259–274.
  23. Borisova A.Y., Zagrtdenov N.R., Toplis M.J. et al. New model of chromite and magnesiochromite solubility in silicate melts // 2020. http: hal.science/hal-02996632
  24. Cosca M.A., Peacor D.R. Chemistry and structure of esseneite (CaFe3+AlSiO6); a new pyroxene produced by pyrometamorphism // Amer. Mineral. 1987. V. 72. P. 148–156.
  25. Cosca M.A., Essene E.J., Geissman J.W. et al. Pyrometamorphic rocks associated with naturally burned coal beds, Powder River basin, Wyoming // Amer. Mineral. 1989. V. 74. P. 85–100.
  26. Czamanske G.K., Wones D.R. Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: Part 2, the mafic silicates // J. Petrol. 1973. V. 14. P. 349–380.
  27. Galuskina I.O., Stachowicz M., Vapnik Y. et al. Qeltite, IMA 2021–032. CNMNC Newsletter 62; Mineral. Mag. 2021. V. 85.
  28. Ghose S., Okamura F.P., Ohashi H. The crystal structure of CaFe3+SiAlO6 and the crystal chemistry of Fe3+ → Al3+ substitution in calcium Tschermak’s pyroxene // Contrib. Mineral. Petrol. 1986. V. 92. P. 530–535.
  29. Guy B., Thiéry V., Garcia D. et al. Columnar structures in pyrometamorphic rocks associated with coal-bearing spoil-heaps burned by self-ignition, La Ricamarie, Loire, France // Mineral. Petrol. 2020. V. 114. P. 465–487.
  30. Irvine T.N. Crystallization sequences in the Muskox intrusion and other layered intrusions – II. Origin of chromitite layers and similar deposits of other magmatic ores // Geochim. Cosmochim. Acta. 1975. P. 39. P. 991–1020.
  31. Kabalov Yu.K., Oeckler O., Sokolova E.V. et al. Subsilicic ferrian aluminian diopside from the Chelyabinsk coal basin (southern Urals) – an unusual clinopyroxene // Eur. J. Mineral. 1997. V. 9. P. 617–622.
  32. Kinnaird J.A., Kruger F.J., Nex P.A.M. et al. Chromitite formation – a key to understanding processes of platinum enrichment // Appl. Earth Sci. 2002. V. 111. P. 23–35.
  33. Korolyuk V.N., Usova L.V., Nigmatulina E.N. Accuracy in the determination of the compositions of main rock forming silicates and oxides on a JXA-8100 microanalyzer // J. Anal. Chem. 2009. V. 64. P. 1042–1046.
  34. Melluso L., Conticelli S., D’Antonio M. et al. Petrology and mineralogy of wollastonite- and melilite-bearing paralavas from the Central Apennines, Italy // Amer. Mineral. 2004. V. 88. P. 1287–1299.
  35. Mitchell R.H. Undersaturated alkaline rocks: mineralogy, petrogenesis, and economic potential // Mineral. Ass. Canada. 1996. 312 p.
  36. Mitchell R.H. Igneous Rock Associations 26. Lamproites, Exotic Potassic Alkaline Rocks: A Review of their Nomenclature, Characterization and Origins // Geosci. Canada. 2020. V. 47. P. 119–142.
  37. Morimoto N., Fabries J., Ferguson A.K. et al. Nomenclature of pyroxenes // Mineral. Mag. 1988. V. 52. P. 535–550.
  38. Mulders J.P.A., Oelkers E.H. An experimental study of sepiolite dissolution and growth rates as function of the aqueous solution saturation state at 60℃ // Geochim. Cosmochim. Acta. 2021. ff10.1016/j.gca.2021.09.004ff.ffhal-03329471f
  39. Peretyazhko I.S., Savina E.A., Khromova E.A. Low-pressure (>4 MPa) and high-temperature (>1250°C) incongruent melting of marl limestone: formation of carbonate melt and melilite–nepheline paralava in the Khamaryn–Khural–Khiid combustion metamorphic complex, East Mongolia // Contrib. Mineral. Petrol. 2021. V. 176. P. 38.
  40. Reato L., Huraiová M., Konečný P. et al. Formation of esseneite and kushiroite in Tschermakite-bearing calc-silicate xenoliths ejected in alkali basalt // Minerals. 2022. V. 12. P. 156.
  41. Sharygin V.V. A hibonite-spinel-corundum-hematite assemblage in plagioclase-clinopyroxene pyrometamorphic rocks, Hatrurim Basin, Israel: mineral chemistry, genesis and formation temperatures // Mineral. Mag. 2019. V. 83. P. 123–135.
  42. Sokol E., Volkova N., Lepezin G. Mineralogy of pyrometamorphic rocks associated with naturally burned coal-bearing spoil-heaps of the Chelyabinsk coal basin, Russia // Eur. J. Mine- ral. 1998. V. 10. P. 1003–1014.
  43. Sokol E., Sharygin V., Kalugin V. et al. Fayalite and kirschsteinite solid solutions in melts from burned spoil-heaps, South Urals, Russia // Eur. J. Mineral. 2002. V. 14. P. 795–807.
  44. Stoppa F., Rosatelli G., Cundari A. et al. Comment on Melluso et al. (2003): Reported data and interpretation of some wollastonite- and melilite-bearing rocks from the Central Apennines of Italy // Amer. Mineral. 2005. V. 90. P. 1919–1925.
  45. Woolley A.R., Kogarko L.N., Konova V.A. et al. Alkaline Rocks and Carbonatites of the World. Part 2. Former USSR. Springer, 1995. 229 p.
  46. Yalçin H., Bozkaya Ö. Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara Ophiolitic Mélange, central Anatolia, Turkey // Clays Clay Mineral. 2004. V. 52. P. 227–239.
  47. Zhang Y., Zhang X., Hower J.C. et al. Mineralogical and geochemical characteristics of pyrometamorphic rocks induced by coal fires in Junggar Basin, Xinjiang, China // J. Geochem. Explor. 2020. V. 213. P. 106511.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location and diagram of the geological structure of the Purtovino area (a, b), compiled on the basis of maps of pre-Quaternary geology of the Vologda region (Buslovich, 2000, and others). (c) Photograph of clearing of the studied body. (d) Diagram of the geological structure of the body (compiled using materials of A.I. Trufanov): 1 - greenish-gray marl, fractured; 2 - brick-red argillite, with calcium carbonate deposits along fracturing planes; 3 - brown to brick-red siltstone, fractured, thermally altered, with carbonate films along fracturing planes; 4 - brick-red marl, thermally altered, with a whitish coating of carbonates; 5 – light yellow to greenish-gray siltstone, thermally altered, fractured (brown carbonate-ferruginous formations along the fractures); 6 – reddish-brown marl with light gray-green mottling. Carbonatization and development of brown to gray argillite with a greenish tint and conchoidal fracture are noted along the fractures; 7 – brown siltstone with thin interlayers of argillite and marl, developed beyond the aureole of thermally altered rocks; 8 – sodded scree; 9 – body of alkaline microclinopyroxent. In the upper contact there is a mealy white coating of carbonate-siliceous material in places up to 0.5 cm thick; 10 – scree material on the slope (sodded in places) and fragments of rocks from clearing the outcrop.

Download (771KB)
3. Fig. 2. Samples of alkaline microclinopyroxenite from a sheet-like body in the Purtovino area, representing two characteristic types. (a) Rocks of type 1 and type 2, having a discrete contact line, represent distinguished endo- and exocontact facies, respectively. Exocontact rocks are mostly glassy. They are characterized by vertically oriented cracks of contraction origin. (b) Fragments of highly porous textures. (c) Top view.

Download (371KB)
4. Fig. 3. Backscattered electron images showing characteristic structures and associations of the Purtovino body. (a, b) Varieties of microgranular clinopyroxenite (Cpx). (c) Cpx grains that contain leucite (Lct) inclusions and are associated with large veinlet grains of calcite (Cal). The tabular grain of melilite (Mll) surrounded by leucite (Lct) in (d) is associated with small zoned grains of Cpx. Symplectitic segregations of Lct are contained in the host melilite, Mll (lower part of Fig. 3d). (e) Aggregates of minerals of the magnesioferrite–magnetite (Mfr–Mag) series associated with leucite (Lct) and silicate glass: Glass (K–Na–(Al)-bearing). Note the development of Cpx crystallites in Fig. 3e. Subhedral magnesiochromite grain (Mchr in Fig. 3e) is associated with microgranular Cpx (zoned) and interstitial leucite (Lct) segregations.

Download (1MB)
5. Fig. 4. Backscattered electron images (a–c) show a teardrop-shaped sepiolite grain (Sep) in association with host melilite (Mll) and a rim-like segregation of porous brownmillerite (Bmlr). Inclusions of Cal (calcite), Lct, Wo (wollastonite) and Cpx grains are present. An aggregate of larnite grains (Lrn) and a rim-like segregation of brownmillerite (Bmlr) are in association with melilite, Mll (d). Xenogenic quartz grains (Qz), one of which is fractured and partially resorbed, are surrounded by silicate glass (Glass) enriched in K, Na and Al, with minute inclusions of wollastonite (Wo), calcite (Cal) and clinopyroxene (Cpx) (Figs. 4e, 4f). (g) Images of fan-shaped textures composed of two-layer intergrowths of acicular crystals of melilite (Mll) and plagioclase (Pl) in association with hedenbergite (Hd) dendrites; Cal – calcite.

Download (1MB)
6. Fig. 5. Backscattered electron images show characteristic examples of zoning in clinopyroxene (Cpx) grains associated with melilite (Mll), wollastonite (Wo) and leucite (Lct). Letters a–d indicate the positions of the start and end points of the detailed microprobe profiles (ab and cd), the results of which are discussed in the text and presented in Figs. 7a–7i.

Download (313KB)
7. Fig. 6. Variations in the contents of FeOtotal–MgO in wt.% (a), as well as Fe3+–Mg (b), Al–Mg (c), Fe3+–Al (d), Al–Si (d) and Ti–Al (e), expressed in atoms per form. units (a. f. u.), observed from the results of 394 analyses (n=394) of clinopyroxene grains in its various textural and structural forms in the Purtovino region body. The graphs show the values ​​of the correlation coefficient (R).

Download (545KB)
8. Fig. 7. Variations in the composition of zoned clinopyroxene grains from the Purtovino area body established from ab and cd electron microprobe profiles. The analyzed Cpx grains and the location of the profiles are shown in Figs. 5a–5d. The contents of Na2O (a), K2O (b), MnO (c), and TiO2 (d) are presented in wt. %, while Mg (d), Fe3+ (f), Fe2+ (g), and Al (h) are expressed as atoms per form unit (a. f. u.). The distance along the abscissa axis is given in micrometers. Fig. 7i schematically shows the four distinguished crystallization stages, which are discussed in the text.

Download (517KB)
9. Fig. 8. Variations in the compositions of melilite, i.e. members of the akermanite–gehlenite series (Åk–Gh) on the Mg–AlVI–Fe2+ diagram based on the results of 83 analyses (n = 83).

Download (113KB)
10. Fig. 9. Variations in the composition of minerals of the akermanite–gehlenite series on the Ca–Na diagram, expressed in atoms per form. units (a. f. u.) (n = 83).

Download (67KB)
11. Fig. 10. Variations in the compositions of magnesiochromite (Mchr; n = 10) and members of the magnesioferrite–magnetite series (Mfr–Mag; n = 30) on the Cr–Fe3+–Al triangular diagram. Several compositions of spinel enriched in Fe3+ (a component of Mfr) are conditionally included in the observed Mfr–Mag series.

Download (120KB)
12. Fig. 11. Variations in the compositions of magnesiochromite (Mchr) and members of the magnesioferrite–magnetite (Mfr–Mag) series in the Fe2+–Mg (a) and Fe3+–Al (b) diagrams, expressed in atoms per form units (a. f. u.). The correlation coefficient (R) value shown in Fig. 11b was calculated based on the compositions of the members of the Mfr–Mag series (n = 30).

Download (167KB)
13. ESM_1.xlsx – Composition clinopyroxene; ESM_2.xlsx – Structure melilita; ESM_3.xlsx – Composition leucite; ESM_4.xlsx – Composition of wollastonite; ESM_5.xlsx – Composition calcite; ESM_6.xlsx – Composition of larnite; ESM_7 hlsx – The composition of the grain is sepiolite-palygorskite; ESM_8.xlsx – Composition of brownmillerite; ESM_9.xlsx – Composition of minerals of the spinel group; ESM_10.xlsx – Composition Ca-Fe titanosilicate.
Download (119KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies