Rocks of the Ary-Bulak ongonite massif: relationship between geochemical features, mineral-phase assembleges, and formation processes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper reports the study of geochemistry, mineral-phase assemblages of rocks of the Ary-Bulak ongonite massif, compositions of major, minor and accessory minerals (quartz, feldspars, topaz, zinnwaldite, prosopite, rare Ca–Al-fluorides, W-ixiolite, columbite, zircon, cassiterite, and fluocerite), fluoride–calcium (F-Ca) phase, and fluorite formed from it. The rock-forming minerals of porphyritic ongonites are quartz, albite and sanidine, and minor minerals are topaz and zinnwaldite. The ongonitic matrix is composed of a quartz–sanidine–albite assemblage with micron-sized needle-shaped topaz crystals. In transitional porphyritic rocks and in the endocontact aphyric zone, the interstices between matrix minerals are filled with a F-Ca phase formed from a F-Ca (fluoritic) stoichiometric melt. Fluoride–silicate liquid immiscibility in ongonitic magma and fluid-magmatic processes led to the redistribution of REE, Y, and many trace elements between melts, fluids, minerals and a contrasting change in mineral-phase assemblages in the rocks. This is associated with the appearance of M-type (T1 La–Nd, T4 Er–Lu) and W-type (T3 Gd–Ho) tetrad effects in the chondrite-normalized REE patterns of rocks. Degassing of magmatic fluids through the endocontact aphyric zone was accompanied by the crystallization of Sr-bearing prosopite and hydrous Ca–Al-fluorides. Aphyric rocks, compared to porphyritic ongonites and porphyritic transitional rocks, are enriched in H2O, Sr, Ba, Rb, Sn, W, Ta, Be, Zr, Hf, Sb, As, Sc, but contain less Li, Pb, Zn, Y and REE. During the effect of magmatic fluids on rocks enriched in Ca and F, especially in the endocontact aphyric zone, albite was partially or completely replaced by the F-Ca phase and kaolinite, and the F-Ca phase recrystallized into aggregates of micron-sized grains of stoichiometric fluorite without trace elements. Rb-Cs mica also crystallized in the rim of zinnwaldite laths, the zones of which maximally enriched in rubidium with the cation relation Rb > K > Cs may be a new mineral. The geochemistry of the rocks, the features of their mineral-phase assemblages, the compositional evolution of the minerals and the F-Ca phase are a consequence of the formation of the Ary-Bulak massif from ongonitic magma during a fluid-magmatic process complicated by fluoride–silicate liquid immiscibility with the participation of fluoritic and other fluoride melts, as well as magmatic fluids of P-Q and the first types.

Full Text

Restricted Access

About the authors

I. S. Peretyazhko

A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: pgmigor@mail.ru
Russian Federation, Irkutsk

E. A. Savina

A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

Email: pgmigor@mail.ru
Russian Federation, Irkutsk

A. S. Dmitrieva

A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

Email: pgmigor@mail.ru
Russian Federation, Irkutsk

References

  1. Андреева О.В., Петров В.А., Полуэктов В.В. Мезозойские кислые магматиты Юго-Восточного Забайкалья: петрогеохимия, связь с метасоматизмом и рудообразованием // Петрология. 2020. Т. 62. № 1. С. 76–104. https://doi.org/10.1134/S1075701520010018
  2. Антипин B.C., Гайворонский Б.А., Сапожников В.П., Писарская В.А. Онгониты Шерловогорского района (Восточное Забайкалье) // Докл. АН СССР. 1980. Т. 253. № 1. С. 228–232.
  3. Антипин В.С., Андреева И.А., Коваленко В.И., Кузнецов В.А. Геохимические особенности онгонитов Ары-Булакского массива, Восточное Забайкалье // Петрология. 2009. Т. 17. № 6. С. 601–612.
  4. https://doi.org/10.1134/S0869591109060034
  5. Алферьева Я.О., Чевычелов В.Ю., Новикова А.С. Экспериментальное исследование условий кристаллизации онгонитов массива Ары-Булак (Восточное Забайкалье) // Петрология. 2022. Т. 30. № 2. С. 209–224. https://doi.org/10.1134/S0869591122020011
  6. Государственная геологическая карта Российской Федерации масштаба 1 : 200000. Издание второе. Серия Даурская. Лист M-50-XIV (Ниж. Цасучей), ХХ (Соловьевск). Объяснительная записка [Электронный ресурс] / А.В. Куриленко, Н.Г. Ядрищенская, В.В. Карасев и др.; Минприроды России, Роснедра, Забайкалнедра, ОАО “Читагеолсъемка”. М.: Московский филиал ФГБУ “ВСЕГЕИ”, 2019.
  7. Граменицкий Е.Н., Щекина Т.И. Поведение редкоземельных элементов и иттрия на заключительных этапах дифференциации фторсодержащих магм // Геохимия. 2005. № 1. С. 45–59. https://doi.org/10.31857/S001675252004010X
  8. Дергачев В.Б. Классификация пород группы онгонита // Геология и геофизика. 1992. № 2. С. 104–112.
  9. Дмитриева А.С., Перетяжко И.С., Савина Е.А. Реликты фторидно-кальциевого (флюоритового) и солевых расплавов в породах массива Ары-Булак (Восточное Забайкалье) // Изв. Томского политех. ун-та. Инжиниринг георесурсов. 2021. Т. 332. № 5. С. 201–214. doi: 10.18799/24131830/2021/05/3203
  10. Коваленко В.И., Коваленко Н.И. Онгониты – субвулканические аналоги литий-фтористых гранитов. М.: Наука, 1976. 124 с.
  11. Коваленко В.И., Гребенников А.М., Антипин В.С. Онгониты Ары-Булакского массива (Забайкалье) – первая находка субвулканических аналогов редкометальных литий-фтористых гранитов (“апогранитов”) в СССР // Докл. АН СССР. 1975. Т. 220. № 5. С. 1169–1171.
  12. Костицын Ю.А., Коваленко В.И., Ярмолюк В.В. Rb-Sr – изохронное датирование штока онгонитов Ары-Булак: Восточное Забайкалье // Докл. АН. 1995. Т. 343. № 3. С. 381–384.
  13. Кузнецов В.А., Андреева И.А., Коваленко В.И. и др. Содержание воды и элементов-примесей в онгонитовом расплаве массива Ары-Булак, Восточное Забайкалье (данные изучения расплавных включений) // Докл. АН. 2004. Т. 396. № 4. C. 524–529.
  14. Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. Электронно-зондовое определение состава минералов: микроанализатор или сканирующий микроскоп? // Геология и геофизика. 2015. Т. 56. № 8. С. 1473–1482. https://doi.org/10.1016/j.rgg.2015.07.006
  15. Наумов В.Б., Соловова И.П., Коваленко В.И., Гужова А.В. Кристаллизация топаза, альбита, калиевого полевого шпата, слюды и колумбита из онгонитового расплава // Геохимия. 1990. № 8. С. 1200–1205.
  16. Перетяжко И.С. CRYSTAL – прикладное программное обеспечение для минералогов, петрологов, геохимиков // Зап. ВМО. 1996. № 3. С. 141–148.
  17. Перетяжко И.С. Включения магматических флюидов: P-V-T-X свойства водно-солевых растворов разных типов, петрологические следствия // Петрология. 2009. T. 17. № 2. C. 197–221. https://doi.org/10.1134/S0869591109020052
  18. Перетяжко И.С., Савина Е.А. Флюидно-магматические процессы при образовании пород массива онгонитов Ары-Булак (Восточное Забайкалье) // Геология и геофизика. 2010а. Т. 51. № 10. С. 1423–1442. https://doi.org/10.1016/j.rgg.2010.09.003
  19. Перетяжко И.С., Савина Е.А. Тетрад-эффекты в спектрах распределения редкоземельных элементов гранитоидных пород как индикатор процессов фторидно-силикатной жидкостной несмесимости в магматических системах // Петрология. 2010б. Т. 18. № 5. С. 536–566. https://doi.org/10.1134/S086959111005005X
  20. Перетяжко И.С., Савина Е.А. Признаки жидкостной несмесимости в онгонитовой магме по данным изучения расплавных и флюидных включений в породах массива Ары-Булак (Восточное Забайкалье) // Докл. АН. 2010в. Т. 433. № 5. С. 678–683. https://doi.org/10.1134/S1028334X10080192
  21. Перетяжко И.С., Загорский В.Е., Царева Е.А., Сапожников А.Н. Несмесимость фторидно-кальциевого и алюмосиликатного расплавов в онгонитах массива Ары-Булак (Восточное Забайкалье) // Докл. АН. 2007а. Т. 413. № 2. С. 244–250. https://doi.org/10.1134/S1028334X07020419
  22. Перетяжко И.С., Царева Е.А., Загорский В.Е. Первая находка аномально цезиевых алюмосиликатных расплавов в онгонитах (по данным изучения расплавных включений) // Докл. АН. 2007б. T. 413. № 6. C. 791–797. https://doi.org/10.1134/S1028334X07030324
  23. Перетяжко И.С., Савина Е.А., Дриль С.И., Герасимов Н.С. Rb-Sr изотопная система и особенности распределения Rb и Sr в породах массива онгонитов Ары-Булак, образованных при участии процессов фторидно-силикатной магматической несмесимости // Геология и геофизика. 2011. Т. 52. № 11. С. 1776–1789. https://doi.org/10.1016/j.rgg.2011.10.009
  24. Перетяжко И.С., Савина Е.А., Сук Н.И. и др. Эволюция состава фторидно-кальциевого расплава по экспериментальным данным и процессы образования флюорита в риолитах // Петрология. 2020. Т. 28. № 3. С. 254–279. https://doi.org/10.1134/S0869591120030054
  25. Сырицо Л.Ф., Баданина Е.В., Абушкевич В.С. и др. Вулканоплутонические ассоциации кислых пород в пределах редкометальных рудных узлов Забайкалья: геохимия пород и расплавов, возраст, Р-Т условия кристаллизации // Петрология. 2012. Т. 20. № 6. С. 622–648. https://doi.org/10.1134/S0869591112060057
  26. Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов. М.: Наука, 1977. 280 с.
  27. Трошин Ю.П., Гребенщикова В.И., Бойко С.М. Геохимия и петрология редкометалльных плюмазитовых гранитов. Новосибирск: Наука, 1983. 181 с.
  28. Щекина Т.И., Русак А.А., Алферьева Я.О. и др. Распределение REE, Y, Sc и Li между алюмосиликатным и алюмофторидным расплавами в модельной гранитной системе в зависимости от давления и содержания воды // Геохимия. 2020. Т. 65. № 4. С. 343–361. doi: 10.31857/S001675252004010X
  29. Agangi A., Kamenetsky V.S., Hofmann A. et al. Crystallisation of magmatic topaz and implications for Nb–Ta–W mineralisation in F-rich silicic melts – the Ary-Bulak ongonite massif // Lithos. 2014. V. 202–203. P. 317–330. https://doi.org/10.1016/j.lithos.2014.05.032
  30. Huang F., Wang R.-C., Xie L. et al. Differentiated rare-element mineralization in an ongonite – topazite composite dike at the Xianghualing tin district, Southern China: an electron-microprobe study on the evolution from niobium-tantalum-oxides to cassiterite // Ore Geol. Rev. 2015. V. 65. P. 761–778. https://doi.org/10.1016/j.oregeorev.2014.08.008
  31. Lv Z.-H., Zhang H., Tang Y. Lanthanide tetrads with implications for liquid immiscibility in an evolving magmatic-hydrothermal system: evidence from rare earth elements in zircon from the No. 112 pegmatite, Kelumute, Chinese Altai // J. Asian Earth Sci. 2018. V. 164. P. 9–22. https://doi.org/10.1016/j.jseaes.2018.05.031
  32. McDonough W.E., Sun S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
  33. Peretyazhko I.S., Savina E.A. Fluoride-calcium (F-Ca) melt in rhyolitic magma: Evidence from fluorite-rich rhyolites of the Nyalga Basin, Central Mongolia // Lithos. 2020. V. 354–355. 105348. https://doi.org/10.1016/j.lithos.2019.105348
  34. Peretyazhko I.S., Tsareva E.A. Processes of fluid-magmatic crystallization of heterogeneous magma at rock formation of Ary-Bulak ongonite massif, Russia // ACROFI-2 Asian Current Research on Fluid Inclusions. India, Kharagpur, 2008. P. 147–150.
  35. Shuai X., Li S.-M., Zhu Di-C. et al. Tetrad effect of rare earth elements caused by fractional crystallization in high-silica granites: an example from central Tibet // Lithos. 2021. V. 384–385. 105968. https://doi.org/10.1016/j.lithos.2021.105968
  36. Tindle A.G., Webb P.C. Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks // Eur. J. Mineral. 1990. V. 2. P. 595–610. https://doi.org/10.1127/ejm/2/5/0595
  37. Tischendorf G., Rieder M., Förster H.-J. et al. A new graphical presentation and subdivision of potassium micas // Mineral. Mag. 2004. V. 68. P. 649–667. https://doi.org/ 10.1180/0026461046840210
  38. Veksler I.V., Dorfman A.M., Kamenetsky M. et al. Partitioning of lanthandes and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks // Geochim. Cosmochim. Acta. 2005. V. 69. P. 2847–2860. https://doi.org/10.1016/j.gca.2004.08.007
  39. Yang Z.-Y., Wang Q., Zhang C. et al. Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: new insights into the genesis of highly evolved granites // Lithos. 2018. V. 312–313. P. 258–273. https://doi.org/10.1016/j.lithos.2018.04.018

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geological maps-schemes of the Ary-Bulak massif according to literary data. (a) Scheme by B. A. Gaivoronsky, published in (Kovalenko, Kovalenko, 1976). 1 – sedimentary and volcanic rocks of the Ust-Borzinskaya suite, 2 – basaltoids, 3 – aphyric endocontact ongonites, 4 – porphyry ongonites. (b) Vertical section of the massif, according to (Troshin et al., 1983). 1 – metaeffusives, 2 – andesites, andesite-basalts, 3 – ongonites, 4 – Quaternary deposits, 5 – wells. (c) Map, according to (Antipin et al., 2009). 1 – Quaternary deposits, 2 – porphyritic ongonites, 3 – “crystallized ongonites, with Ca-F glass”, 4 – aphyric ongonites, fine-grained and glassy, ​​5 – basalts, andesite-basalts, 6 – limestones, 7 – shales. Note that the rocks of the Ary-Bulak massif, according to our data, do not contain silicate or any fluoride glass.

Download (606KB)
3. Fig. 2. Geological map of the Ary-Bulak massif. Constructed taking into account the data of drilling and geophysical works carried out by geological parties – Chesucheyskaya in 1964–1965 and Leontyevskaya in 1967–1969 (materials provided by geologist B.A. Gaivoronsky).

Download (426KB)
4. Fig. 3. Rocks of the massif: (a) – porphyritic ongonite with crystals of smoky quartz, topaz and sanidine, sample ARB-28; (b) – transitional porphyry rock, sample ARB-26. (c) – aphyric rock, sample ARB-19; (d–f) – microstructural features in thin sections (polarizers are half-crossed): (d) – porphyritic ongonite, sample ARB-34; (d) – transitional porphyry rock, sample ARB-190; (e) – aphyric rock, sample ARB-184. Length of scale bar in (a–c) – 10 mm, in (d–f) – 1 mm. Qz – quartz, Tpz – topaz, Ab – albite, Sa – sanidine, Psp – prosopite, F-Ca – calcium fluoride phase.

Download (814KB)
5. Fig. 4. Ratios of K2O, Na2O, CaO, F and SiO2 in the rocks of the massif.

Download (379KB)
6. Fig. 5. A/CNK–A/NK diagram and the relationships between SiO2 and K2O, Al2O3, Na2O, (FeO + Fe2O3), H2O, TiO2, CO2 in the rocks of the massif. For legend, see Fig. 4.

Download (488KB)
7. Fig. 6. Relationships between SiO2 (wt.%) and Li, Rb, Cs, Ba, Sr, Zr, Ta, Nb, W, Sn, Zn, Pb (ppm) in the rocks of the massif. For legend, see Fig. 4. Concentrations of W, Sn, Zn, Pb – according to quantitative spectral analysis, other elements – according to ICP-MS.

Download (697KB)
8. Fig. 7. Multi-element distributions of massif rocks normalized to the primitive mantle. Concentrations of elements in the primitive mantle according to (McDonough, Sun, 1995).

Download (538KB)
9. Fig. 8. Chondrite-normalized REE distributions of the massif rocks. Element concentrations in chondrite C1 after (McDonough, Sun, 1995). Lines with signs show the REE spectra for average rock compositions. Samples ARB-24 and ARB-105 are characterized by a negative cerium anomaly. T1, T3, and T4 are REE tetrads as a consequence of fluoride-silicate immiscibility for porphyry ongonites (a), interaction of magmatic fluids with transitional porphyry rocks (b), and the aphyric zone of the massif (c).

Download (530KB)
10. Fig. 9. Mineral associations of rocks in thin sections (polarizers are crossed). (a) – intergrowth of albite and sanidine crystals, sample ARB-357. (b) – ongonite matrix, sample ARB-34. (c) – topaz crystal with a rim containing melt and fluid inclusions, sample ARB-34. (d) – zonal zinnwaldite, sample ARB-146. (d) – prosopite and topaz in aphyric rock, sample ARB-19. (e) – aphyric rock matrix, sample ARB-54. (g) – albite phenocrysts (contours shown) are completely replaced by the F-Ca phase and/or kaolinite, sample ARB-343. (z) – calcite aggregate in ongonite matrix, sample ARB-142. Scale bar length is 200 μm. Ab – albite, Sa – sanidine, Qz – quartz, Tpz – topaz, Mica – zinnwaldite, Psp – prosopite, F-Ca – calcium fluoride phase, Kln – kaolinite, Cal – calcite.

Download (1MB)
11. Fig. 10. Feldspars in rocks: (a) – case albite crystals with a rim of sanidine in a transitional porphyry rock, sample ARB-106; (b) – albite crystal in sanidine is partially replaced by the F-Ca phase in an aphyric rock, sample ARB-184; (c) – case albite crystal is completely replaced by the F-Ca phase and kaolinite in an aphyric rock, sample ARB-4; (d) – sanidine crystal with albite inclusions, some of which are replaced by the F-Ca phase in an aphyric rock, sample ARB-182. In the matrix of aphyric rocks (c and d), the F-Ca phase contains acicular inclusions of sanidine of micron sizes. Length of scale bar – 100 μm. See Fig. for legend. 9. BSE images.

Download (879KB)
12. Rice. 11. Compositions of feldspars in the diagram anorthite (An)–orthoclase (Or)–albite (Ab). Minals: Sa – sanidine, Ant – anorthoclase, Olg – oligoclase.

Download (166KB)
13. Fig. 12. Fluoride crystalline phases in aphyric rocks. (a) – prosopite phenocrysts, sample ARB-325; (b) – prosopite and sanidine intergrowth, sample ARB-19; (c) – fluorite crystals in the F-Ca phase, sample ARB-106; (d) – veinlet in sample ARB-4 with insets: (d) – gearxutite in the F-Ca phase, (e) – undiagnosed calcium aluminofluoride, the composition of which is compared with karlhintzeite. The length of the scale bar in (a, b, d) is 100 μm, in (c, d, e) – 10 μm. Fl – fluorite, Gak – gearxutite, Chz? – undiagnosed calcium aluminofluoride, other designations see in Fig. 9. (a–b) – photographs of thin sections, polarizers are crossed, (c–e) – BSE images.

Download (885KB)
14. Fig. 13. Topaz in rocks: (a) – acicular crystals in the matrix, sample ARB-34; (b) – crystal with mineral inclusions, sample ARB-371; (c) – crystal with inclusions of albite, zinnwaldite and wolframoixiolite, sample ARB-106; (d) – inclusions of acicular crystals of wolframoixiolite, sample ARB-34. The scale bar in (a, b, d) is 50 µm, in (c) – 1 mm. W-Ix – wolframoixiolite, other designations see in Fig. 9; (a, c) – BSE images; (b, d) – photographs of thin sections in transmitted light.

Download (798KB)
15. Fig. 14. Zinnwaldite in rocks: (a) – with numerous inclusions, sample ARB-34 and (b) – ARB-106; (c) – with a less ferruginous rim, sample ARB-370; (d) – with an Rb-Cs rim and an inclusion of columbite-(Mn), sample ARB-4. The scale bar is 50 μm. Clb – columbite-(Mn), Zrn – zircon, other designations see Fig. 9. BSE images.

Download (886KB)
16. Fig. 15. Relationship between K, Rb and Cs in Rb-Cs mica from the rim of zinnwaldite laths in aphyric rock, sample ARB-4.

Download (107KB)
17. Fig. 16. Compositions of calcium aluminofluorides in aphyric rocks (samples ARB-4, ARB-19, ARB-176 and ARB-182) on the Ca–F–Al diagram.

Download (178KB)
18. Fig. 17. Accessory minerals: (a) – columbite-(Mn) and wolframoixiolite in zinnwaldite, sample ARB-136; (b) – needle-shaped crystals of wolframoixiolite in topaz, sample ARB-146; (c) – xenotime in zinnwaldite, sample ARB-106; (d) – zircon and fluocerite-(Ce) in transitional porphyry rock, sample ARB-353; (d) – cassiterite in transitional rock, sample ARB-131. Length of scale bar in (a–d) – 100 µm, in (d) – 20 µm. Xtm – xenotime, Fcrt-Ce – fluocerite-(Ce), Cst – cassiterite, other designations see Fig. 9, 13 and 14. (a–c) photographs of thin sections, transmitted light (a) polarizers are crossed (b, c), (d, d) – BSE images.

Download (725KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies