Model of the formation of monzogabbrodiorite-syenite-granitoid intrusions by the example of the Akzhailau massif (East Kazakhstan)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a model of the formation of a multiphase granitoid Akzhailau massif, formed within a Caledonian block of the Earth’s crust in Hercynian time. This work is based on the results of studies of petrogenic and rare elements composition, geochronological, mineralogical and isotope-geochemical studies. Three stages of the formation of the Akzhailau massif are distinguished, which differ significantly from the previously accepted ideas about the multicomplexity and polychronicity of this intrusive: 1) the formation of moderate alkaline A2-type leuсogranites (308–301 Ma); 2) intrusion of monzodiorites into the base of leucogranites (~295 Ma) increasing of partial melting degree of substrates with the formation of syenites and moderate alkaline granites of I-type (294–292 Ma); 3) the intrusion of dikes and small bodies of alkaline ferroekermanite A1-type leucogranites in the west and north of massif (~289 Ma). The Akzhailau massif was formed in the interval of about 15 million years in the middle-upper crust during the interaction of subalkaline basitic magmas of plume nature with metamorphosed crustal substrates of the orogenic structure.

Full Text

Restricted Access

About the authors

Pavel D. Kotler

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Kazan Federal University

Email: pkotler@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk; Kazan

Aleksandra V. Zakharova

Novosibirsk State University

Email: a.zaxarova@corp.nstu.ru
Russian Federation, Novosibirsk

Dina V. Semenova

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Kazan Federal University

Email: sediva@igm.nsc.ru
Russian Federation, Novosibirsk; Kazan

Anna V. Kulikova

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Kazan Federal University

Author for correspondence.
Email: ak_cool@mail.ru
Russian Federation, Novosibirsk; Kazan

Emil N. Badretdinov

Kazan Federal University

Email: pkotler@yandex.ru
Russian Federation, Kazan

Evgenii I. Mikheev

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: mikheev@igm.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

Aleksei S. Volosov

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: volosovas@igm.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

S. V. Khromykh

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences

Email: serkhrom@igm.nsc.ru
Russian Federation, Novosibirsk

References

  1. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments // Lithos. 1999. V. 46. P. 605–626.
  2. Beard J.S., Lofgren G.E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar // J. Petrol. 1991. V. 32. P. 365–401.
  3. Black L.P., Kamo S.L., Allen C.M. et al. Improved206Pb/218U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geol. 2004. V. 205. P. 115–140.
  4. Boynton W.V. Cosmochemistry of the rare earth elements: meteorite studies. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984. P. 63–114.
  5. Chappell B.W., White A.J.R. Two contrasting granite types // Pacific Geol. 1974. V. 8. P. 173–174.
  6. Collins W.J., Beams S.D., White A.J.R., Chappell B.W. Nature and origin of A-type granites with particular reference to southeastern Australia // Contrib. Mineral. Petrol. 1982. V. 80. P. 189–200.
  7. Cuney M., Barbey P. Uranium, rare metals, and granulite-facies metamorphism // Geosci. Frontiers. 2014. V. 5. Iss. 5. P. 729–745.
  8. Eby G.N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications // Geology. 1992. V. 20. P. 641–644.
  9. Frost B.R., Barnes C.G., Collins W.J. et al. A geochemical classification for granitic rocks // J. Petrol. 2001. V. 42. P. 2033–2048.
  10. Frost C.D., Frost B.R. On ferroan (A-type) granitoids: their compositional variability and modes of origin // J. Petrology. 2011. V. 52. № 1. P. 39–53.
  11. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y. GLITTER: Data reduction software for laser ablation ICP-MS // Ed.P. Sylvester. Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues: Mineral. Associat. Canada, Short Course Ser. 2008. V. 40. P. 307–311.
  12. Khromykh S.V., Kotler P.D., Izokh A.E., Kruk N.N. A review of Early Permian (300–270 Ma) magmatism in Eastern Kazakhstan and implications for plate tectonics and plume interplay // Geodynam. Tectonophys. 2019. V. 10. Iss 1. P. 79–99.
  13. Khromykh S.V., Kotler P.D., Kulikova A.V. et al. Early triassic monzonite–granite series in Eastern Kazakhstan as a reflection of Siberian Large Igneous Province Activity // Minerals. 2022. V. 12. № 9. P. 1101. https://doi.org/10.3390/min12091101
  14. Kotler P.D., Khromykh S.V., Kruk N.N. et al. Granitoids of the Kalba batholith, Eastern Kazakhstan: U-Pb zircon age, petrogenesis and tectonic implications // Lithos. 2021. V. P. 388–389. Art. 106056.
  15. Leake B.E., Woolley A., Charles E.S., Birch W. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names // Amer. Mineral. 1997. V. 82. P. 1019–1037.
  16. Li X., Zhang C. Machine learning thermobarometry for biotite-bearing magmas // J. Geophys. Res.: Solid Earth. 2023. V. 127. e2022JB024137. https://doi.org/10.1029/2022JB024137
  17. Ludwig K.R. ISOPLOT 3.00: a geochronological toolkit for microsoft excel // Berkeley Geochronology Center, California, Berkeley, 2003. p. 39.
  18. Patiño Douce A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? // Geol. Soc. London. 1999. V. 168. P. 55–75.
  19. Pearce J.A., Harris N.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. V. 25. P. 956–983.
  20. Pearce J.A., Norry M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks // Contrib. Mineral. Petrol. 1979. V. 69. P. 33–47.
  21. Renna M.R., Tribuzio R., Tiepolo M. Interaction between basic and acid magmas during the latest stages of the post-collisional Variscan evolution: Clues from the gabbro-granite association of Ota (Corsica-Sardinia batholith) // Lithos. 2006. V. 90. № 1–2. P. 92–110. https://doi.org/10.1016/j.lithos.2006.02.003
  22. Rickwood P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements // Lithos. 1989. V. 22. P. 247–263.
  23. Rieder M., Cavazzini G., D’Yakonov Y.S. et al. Nomenclature of the micas // Canad. Mineral. 1998. V. 36. P. 905–912.
  24. Sen G. Petrology. Principles and Practice. Berlin, Heidelberg: Springer-Verlag, 2014. 368 p.
  25. Slama J., Kosler J., Condon D.J. et al. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geol. 2008. V. 249. № 1–2. P. 1–35.
  26. Steager R.H., Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo-cosmochronology // Earth Planet. Sci. Lett. 1977. V. 36. P. 359–362.
  27. Sun S.-S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geolog. Soc. London, Spec. Publ. 1989. V. 42. P. 313–345.
  28. Tsygankov A.A., Khubanov V.B., Udoratina O.V. et al. Alkaline granitic magmatism of the Western Transbaikalia: Petrogenetic and geodynamic implications from U-Pb isotopic–geochronological data // Lithos. 2021. V. 390–391. 106098.
  29. Vielzeuf D., Montel J.M. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships // Contrib. Mineral. Petrol. 1994. V. 117. P. 375–393.
  30. Whalen J.B., Currie K.L., Chappell B.W. A-type granites: geochemical characteristics, discrimination and petrogenesis // Contrib. Mineral. Petrol. 1987. V. 95. P. 407–419.
  31. Xu Y-G., Wei X., Luo Z-Y. et al. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model // Lithos. 2014. V. 204. P. 20–35.
  32. Yarmolyuk V.V., Kuzmin M.I., Ernst R.E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt // J. Asian Earth Sci. 2014. V. 93. P. 158–179.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geological diagram of the Akzhailau massif. Inset is the position of the Akzhailau array in the structures of the Ob-Zaisan folded software system (Khromykh et al., 2019).

Download (978KB)
3. Fig. 2. Outcrops of rocks of the Akzhailau massif; mingling–contacts between leucogranites and monzogabbrodiorites.

Download (469KB)
4. Fig. 3. Photos of rock sections of the Akzhailau massif (on the left – passing light, on the right – in crossed nichols): (a) – monzogabbrodiorite, (b) – syenite, (c) – uniformly grained granite, (d) – porphyritic granite, (e) – leucogranite, (e) – ferroekermanite leucogranite. Bt – biotite, Pl – plagioclase, Hbl – hornblende, Kfs – potassium feldspar, Qz – quartz, Ab – albite, Eck – eckermanite, Aeg – aegirine.

Download (1MB)
5. Fig. 4. Composition of rock-forming minerals of rocks of the Akzhailau massif: (a) – compositions of amphiboles, classification by (Leake et al., 1997); (b) – composition of plagioclases (top) and feldspars (bottom); (c) – composition of micas.

Download (526KB)
6. Fig. 5. Composition of petrogenic components of rocks of the Akzhailau massif on the TAS diagram (Sharpenok et al., 2013) (a), on the SiO2–K2O diagram (Rickwood, 1989) (b) and on binary diagrams (c). The contents of all oxides are given in wt. %.

Download (589KB)
7. 6. Distribution spectra of rare earth elements normalized to chondrite C 1 (Boynton, 1984) (left) and rare elements normalized to primitive mantle (PM) (Sun, McDonough, 1989) (right).

Download (774KB)
8. Fig. 7. Results of U-Pb isotope dating and cathodoluminescent images of representative zircon grains from rocks of the Akzhailau massif.

Download (774KB)
9. Fig. 8. Results of Ar-Ar isotope dating of amphiboles from rocks of the Akzhailau massif.

Download (172KB)
10. Fig. 9. Results of determination of Sm-Nd and Rb-Sr isotopic compositions of rocks of the Akzhailau massif in diagrams (87Sr/86Sr)i–eNd(T) (a) and eNd–age (b).

Download (246KB)
11. Fig. 10. Geochemical classification of the granitoids of the Akzhailau massif in diagrams. (a) SiO2—FeOtot/(FeOtot + MgO) (Frost et al., 2001); (b) SiO2—MALI (Frost et al., 2001); (c) Al2O3/(CaO + Na2O + K2O)—ASI, mol. Col. (Frost et al., 2001); (d) Zr–Zr/Y (Pearce, Norry, 1979) IAB fields – island–arc basalts, MORB - basalts of mid-oceanic ridges, WPB – intraplate basalts; (e) Rb–(Y + Nb) (Pearce et al., 1984) VAG fields – volcanic granites arc, syn-COLG – granites of collisional orogens, WPG – intraplate granites, ORG – granites of oceanic ridges; (e) (Na2O + K2O)—Fe2O3tot × 5– (CaO + MgO) × 5, mol. Col. (Grebenshchikov, 2014); (g) Zr + Nb + Ce + Y vs. FeOtot/MgO (Whalen et al., 1987) fields FG – fractionated granites, OTG – unfractionated granites; (h) Zr + Nb + Ce + Y vs. (Na2O + K2O)/CaO (Whalen et al., 1987); (i) results of determining P-T formation parameters rocks of the Akzhailau massif.

Download (534KB)
12. Fig. 11. Stages of formation of the Akzhailau massif, based on the generalization of geochronological data. In addition to the author's data, data on the age of ferroekermanite granites of the Bolshaya Espe stock are presented (Baisalova, 2018; Frolova, 2018; Levashova et al., 2022).

Download (304KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies