Model of the formation of monzogabbrodiorite-syenite-granitoid intrusions by the example of the Akzhailau massif (East Kazakhstan)
- Autores: Kotler P.D.1,2,3, Zakharova A.V.2, Semenova D.V.1,3, Kulikova A.V.1,3, Badretdinov E.N.3, Mikheev E.I.1,2, Volosov A.S.1,2, Khromykh S.V.1
-
Afiliações:
- Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Kazan Federal University
- Edição: Volume 32, Nº 2 (2024)
- Páginas: 154-178
- Seção: Articles
- URL: https://journals.rcsi.science/0869-5903/article/view/259544
- DOI: https://doi.org/10.31857/S0869590324020025
- EDN: https://elibrary.ru/DDFVNX
- ID: 259544
Citar
Resumo
This paper presents a model of the formation of a multiphase granitoid Akzhailau massif, formed within a Caledonian block of the Earth’s crust in Hercynian time. This work is based on the results of studies of petrogenic and rare elements composition, geochronological, mineralogical and isotope-geochemical studies. Three stages of the formation of the Akzhailau massif are distinguished, which differ significantly from the previously accepted ideas about the multicomplexity and polychronicity of this intrusive: 1) the formation of moderate alkaline A2-type leuсogranites (308–301 Ma); 2) intrusion of monzodiorites into the base of leucogranites (~295 Ma) increasing of partial melting degree of substrates with the formation of syenites and moderate alkaline granites of I-type (294–292 Ma); 3) the intrusion of dikes and small bodies of alkaline ferroekermanite A1-type leucogranites in the west and north of massif (~289 Ma). The Akzhailau massif was formed in the interval of about 15 million years in the middle-upper crust during the interaction of subalkaline basitic magmas of plume nature with metamorphosed crustal substrates of the orogenic structure.
Palavras-chave
Texto integral

Sobre autores
Pavel Kotler
Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Kazan Federal University
Email: pkotler@yandex.ru
Rússia, Novosibirsk; Novosibirsk; Kazan
Aleksandra Zakharova
Novosibirsk State University
Email: a.zaxarova@corp.nstu.ru
Rússia, Novosibirsk
Dina Semenova
Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Kazan Federal University
Email: sediva@igm.nsc.ru
Rússia, Novosibirsk; Kazan
Anna Kulikova
Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Kazan Federal University
Autor responsável pela correspondência
Email: ak_cool@mail.ru
Rússia, Novosibirsk; Kazan
Emil Badretdinov
Kazan Federal University
Email: pkotler@yandex.ru
Rússia, Kazan
Evgenii Mikheev
Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: mikheev@igm.nsc.ru
Rússia, Novosibirsk; Novosibirsk
Aleksei Volosov
Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: volosovas@igm.nsc.ru
Rússia, Novosibirsk; Novosibirsk
S. Khromykh
Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences
Email: serkhrom@igm.nsc.ru
Rússia, Novosibirsk
Bibliografia
- Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments // Lithos. 1999. V. 46. P. 605–626.
- Beard J.S., Lofgren G.E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar // J. Petrol. 1991. V. 32. P. 365–401.
- Black L.P., Kamo S.L., Allen C.M. et al. Improved206Pb/218U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geol. 2004. V. 205. P. 115–140.
- Boynton W.V. Cosmochemistry of the rare earth elements: meteorite studies. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984. P. 63–114.
- Chappell B.W., White A.J.R. Two contrasting granite types // Pacific Geol. 1974. V. 8. P. 173–174.
- Collins W.J., Beams S.D., White A.J.R., Chappell B.W. Nature and origin of A-type granites with particular reference to southeastern Australia // Contrib. Mineral. Petrol. 1982. V. 80. P. 189–200.
- Cuney M., Barbey P. Uranium, rare metals, and granulite-facies metamorphism // Geosci. Frontiers. 2014. V. 5. Iss. 5. P. 729–745.
- Eby G.N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications // Geology. 1992. V. 20. P. 641–644.
- Frost B.R., Barnes C.G., Collins W.J. et al. A geochemical classification for granitic rocks // J. Petrol. 2001. V. 42. P. 2033–2048.
- Frost C.D., Frost B.R. On ferroan (A-type) granitoids: their compositional variability and modes of origin // J. Petrology. 2011. V. 52. № 1. P. 39–53.
- Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y. GLITTER: Data reduction software for laser ablation ICP-MS // Ed.P. Sylvester. Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues: Mineral. Associat. Canada, Short Course Ser. 2008. V. 40. P. 307–311.
- Khromykh S.V., Kotler P.D., Izokh A.E., Kruk N.N. A review of Early Permian (300–270 Ma) magmatism in Eastern Kazakhstan and implications for plate tectonics and plume interplay // Geodynam. Tectonophys. 2019. V. 10. Iss 1. P. 79–99.
- Khromykh S.V., Kotler P.D., Kulikova A.V. et al. Early triassic monzonite–granite series in Eastern Kazakhstan as a reflection of Siberian Large Igneous Province Activity // Minerals. 2022. V. 12. № 9. P. 1101. https://doi.org/10.3390/min12091101
- Kotler P.D., Khromykh S.V., Kruk N.N. et al. Granitoids of the Kalba batholith, Eastern Kazakhstan: U-Pb zircon age, petrogenesis and tectonic implications // Lithos. 2021. V. P. 388–389. Art. 106056.
- Leake B.E., Woolley A., Charles E.S., Birch W. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names // Amer. Mineral. 1997. V. 82. P. 1019–1037.
- Li X., Zhang C. Machine learning thermobarometry for biotite-bearing magmas // J. Geophys. Res.: Solid Earth. 2023. V. 127. e2022JB024137. https://doi.org/10.1029/2022JB024137
- Ludwig K.R. ISOPLOT 3.00: a geochronological toolkit for microsoft excel // Berkeley Geochronology Center, California, Berkeley, 2003. p. 39.
- Patiño Douce A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? // Geol. Soc. London. 1999. V. 168. P. 55–75.
- Pearce J.A., Harris N.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. V. 25. P. 956–983.
- Pearce J.A., Norry M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks // Contrib. Mineral. Petrol. 1979. V. 69. P. 33–47.
- Renna M.R., Tribuzio R., Tiepolo M. Interaction between basic and acid magmas during the latest stages of the post-collisional Variscan evolution: Clues from the gabbro-granite association of Ota (Corsica-Sardinia batholith) // Lithos. 2006. V. 90. № 1–2. P. 92–110. https://doi.org/10.1016/j.lithos.2006.02.003
- Rickwood P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements // Lithos. 1989. V. 22. P. 247–263.
- Rieder M., Cavazzini G., D’Yakonov Y.S. et al. Nomenclature of the micas // Canad. Mineral. 1998. V. 36. P. 905–912.
- Sen G. Petrology. Principles and Practice. Berlin, Heidelberg: Springer-Verlag, 2014. 368 p.
- Slama J., Kosler J., Condon D.J. et al. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geol. 2008. V. 249. № 1–2. P. 1–35.
- Steager R.H., Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo-cosmochronology // Earth Planet. Sci. Lett. 1977. V. 36. P. 359–362.
- Sun S.-S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geolog. Soc. London, Spec. Publ. 1989. V. 42. P. 313–345.
- Tsygankov A.A., Khubanov V.B., Udoratina O.V. et al. Alkaline granitic magmatism of the Western Transbaikalia: Petrogenetic and geodynamic implications from U-Pb isotopic–geochronological data // Lithos. 2021. V. 390–391. 106098.
- Vielzeuf D., Montel J.M. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships // Contrib. Mineral. Petrol. 1994. V. 117. P. 375–393.
- Whalen J.B., Currie K.L., Chappell B.W. A-type granites: geochemical characteristics, discrimination and petrogenesis // Contrib. Mineral. Petrol. 1987. V. 95. P. 407–419.
- Xu Y-G., Wei X., Luo Z-Y. et al. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model // Lithos. 2014. V. 204. P. 20–35.
- Yarmolyuk V.V., Kuzmin M.I., Ernst R.E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt // J. Asian Earth Sci. 2014. V. 93. P. 158–179.
Arquivos suplementares
