Paleoproterozoic Dacite Dykes of the Vorontsovka Terrane, Volga-Don Orogen: Geochemistry, Age and Petrogenesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The metamorphosed dacitic porphyry dykes were established for the first time in the western part of the Vorontsovska terrane, which is located in the Paleoproterozoic Volga-Don orogen at the margin of Archean Sarmatia and Volga-Ural cratons. The magmatic protolith age for the metadacites is ca. 2.07 Ga. They are ferrous, metaluminous rocks of calc-alkali series and belong to I-type granitoids. Sodium specialization, low concentrations of Mg, Cr, Ni, incoherent elements with sufficient REE fractioning and absence of Eu*-anomalies, high Sr/Y ratio and especially (Gd/Yb)n values (>10), and also radiogenic Nd isotopic composition suppose the juvenile mafic source for the dacitic melts. According to petrogenetic estimations, such conditions could be caused by partial melting of depleted N-MORB type basites at the equilibrium with the eclogitic restite. Supposed mechanism for the dacitic magmas forming is the partial melting of the basites from the lower horizons of crust with highly enlarged thicknes (>60 km) due to preceding collision processes.

Full Text

Restricted Access

About the authors

Konstantin A. Savko

Voronezh State University

Author for correspondence.
Email: ksavko@geol.vsu.ru
Russian Federation, Voronezh

Aleksandr V. Samsonov

Institute of Ore Geology, Petrography, Mineralogy and Geochemistry RAS

Email: samsonov@igem.ru
Russian Federation, Moscow

E. H. Korish

Voronezh State University

Email: ksavko@geol.vsu.ru
Russian Federation, Voronezh

Nikolay S. Bazikov

Voronezh State University

Email: ksavko@geol.vsu.ru
Russian Federation, Voronezh

Aleksandr N. Larionov

Karpinsky Russian Geological Research Institute

Email: ksavko@geol.vsu.ru

Centre for Isotope Research

Russian Federation, St. Petersburg

References

  1. Arth J.G. Behavior of trace elements during magmatic processes – a summary of theoretical models and their applications // J. Res. U.S. Geol. Surv. 1976. V. 4. № 1. P. 41–47.
  2. Bogdanova S., Gorbatschev R., Grad M. et al. EUROBRIDGE: New insight into the geodynamic evolution of the East European Craton // Eds. D.C. Gee, R.A. Stephenson. European Lithosphere Dynamics, Geological Society, London, Memoirs, 32. Geol. Soc. London. 2006. P. 599–628.
  3. Chung S.L., Liu D., Ji J. et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet // Geology. 2003. V. 31. P. 1021–1024.
  4. Drummond M.S., Defant M.J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons // J. Geophys. Res. 1990. V. 95. P. 21503–21521.
  5. Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution // Earth Planet. Sci. Lett. 1988. V. 87. P. 249–265.
  6. Gorbatschev R., Bogdanova S. Frontiers in the Baltic shield // Precambr. Res. 1993. V. 64. P. 3–21.
  7. Hastie A.R., Fitton J.G., Bromiley G.D. et al. The origin of Earth’s first continents and the onset of plate tectonics // Geology. 2016. V. 44. P. 855–858.
  8. Hou Z.Q., Gao Y.F., Qu X.M. et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet // Earth Planet. Sci. Lett. 2004. V. 220. P. 139–155.
  9. Larionov A.N., Andreichev V.A., Gee D.G. The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite // Eds. D.C. Gee, V.L. Pease. The Neoproterozoic Timanide Orogen of Eastern Baltica. Geol. Soc. London, Memoirs. 2004. P. 69–74.
  10. Ludwig K.R. On the treatment of concordant uranium-lead ages // Geochim. Cosmochim. Acta. 1988. V. 62. P. 665–676.
  11. Ludwig K.R. User’s Manual for ISOPLOT/Ex 3.22. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 2005. http://www. bgc.org/klprogrammenu.html
  12. Martin H. The adakitic magmas: modern analogues of Archaean granitoids // Lithos. 1999. V. 46. P. 411–429.
  13. Martin H., Moyen J.-F. Secular changes in TTG composition as markers of the progressive cooling of the Earth // Geology. 2002. V. 30. P. 319–322.
  14. Middlemost E.A.K. Naming materials in the magma/igneous rock system // Earth-Sci. Rev. 1994. V. 37. P. 215–224.
  15. Moyen J.F. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth // Lithos. 2011. V. 123. № 1–4. P. 21–36.
  16. Moyen J.-F., Laurent O. Archaean tectonic systems: а view from igneous rocks // Lithos. 2018. V. 302–303. P. 99–125.
  17. Pearce J.A. A User’s guide to basalt discrimination diagrams // Ed. D.A. Wyman. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, Geological Association of Canada, Short Course Notes. 1996. V. 12. P. 79–113.
  18. Pearce J.A., Harris N.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. V. 25. P. 956–983.
  19. Qin Z., Wu Y., Siebel W. et al. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: a case study from the Huichizi pluton, Qinling orogen, central China // Lithos. 2015. V. 238. P. 1–12.
  20. Rapp R.P., Watson E.B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling // J. Petrol. 1995. V. 36. P. 891–931.
  21. Rollinson H., Pease V. Using geochemical data to understanding geological processes // 2-nd ed. Cambridge, UK; New York: Cambridge University Press, 2021. 661 p.
  22. Savko K.A., Samsonov A.V., Kotov A.B. et al. The Early Precambrian Metamorphic Events in Eastern Sarmatia // Precambr. Res. 2018. V. 311. P. 1–23.
  23. Shchipansky A.A., Kheraskova T.N. The Volga-Don collisional orogen in the East European craton as the Paleoproterozoic analog of the Himalayan-Tibetan orogeny // Geodynam. Tectonophys. 2023. V. 14. № 2. 0692.
  24. Smithies R.H. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite // Earth Planet. Sci. Lett. 2000. V. 182. P. 115–125.
  25. Sotiriou P., Polat A., Windley B., Kusky T. Temporal variations in the incompatible trace element systematics of Archean TTGs: Implications for crustal growth and tectonic processes in the early Earth // Earth-Sci. Rev. 2023. V. 236. 104274.
  26. Stacey J.S., Kramers J.D. Approximation of terrestrial lead isotope evolution by a two stage model // Earth Planet. Sci. Lett. 1975. V. 26. P. 207–221.
  27. Steiger R.H., Jäger H. Subcommission on geochronology: convention of the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1977. V. 36. P. 359–362.
  28. Terentiev R.A., Santosh M. Detrital zircon geochronology and geochemistry of metasediments from the Vorontsovka terrane: implications for microcontinent tectonics // Int. Geol. Rev. 2016. V. 58. P. 1108–1126.
  29. Terentiev R.A., Savko K.A., Santosh M. et al. Paleoproterozoic granitoids of the Losevo terrane, East European Craton: Age, magma source and tectonic implications // Precambr. Res. 2016. V. 287. P. 48–72.
  30. Terentiev R.A., Savko K.A., Santosh M. Paleoproterozoic evolution of the arc–back-arc system in the East Sarmatian Orogen (East European Craton): zircon SHRIMP geochronology and geochemistry of the Losevo volcanic suite // Amer. J. Sci. 2017. V. 317. P. 707–753.
  31. Terentiev R.A., Savko K.A., Santosh M. Post-collisional two-stage magmatism in the East Sarmatian Orogen, East European Craton: evidence from the Olkhovsky ring complex // J. Geol. Soc. 2018. V. 175. P. 86–99.
  32. Terentiev R.A., Savko K.A., Santosh M. et al. Paleoproterozoic granitoids of the Don terrane, East-Sarmatian Orogen: age, magma source and tectonic implications // Precambr. Res. 2020. V. 346. 105790.
  33. Tsuchiya N., Kimura J.-I., Kagami H. Petrogenes is of Early Cretaceous adakitic granites from the Kitakami Mountains, Japan // J. Volcanol. Geotherm. Res. 2007. V. 167. P. 134–159.
  34. Whalen J.B., Currie K.L., Chappell B.W. A type granites: geochemical characteristics, discrimination, and petrogenesis // Contrib. Mineral. Petrol. 1987. V. 95. P. 407–419.
  35. Wang Q., McDermott F., Xu J.F. et al. Cenozoic K-rich adakitic Volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental continental setting // Geology. 2005. V. 33. P. 465–468.
  36. White W.M., Klein E.M. Composition of the oceanic crust // Treatise Geochem. 2-nd ed. 2014. V. 4. № 13. P. 457–496.
  37. Williams I.S. U-Th-Pb Geochronology by ion microprobe // Applications in microanalytical techniques to understanding mineralizing processes. Rev. Econom. Geol. 1998. V. 7. P. 1–35.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic geological map of the Voronezh crystalline massif. The position of the crustal segments of the East European craton according to (Gorbatschev and Bogdanova, 1993).

Download (934KB)
3. Fig. 2. Geological column sq. 548-c and micrographs of dacite porphyry sections: (a–d) – modified plagioclase xenocrysts in fine-grained quartz feldspar matrix; (e) – zonality of plagioclase xenocryst in dacite. The numbering of the samples in the figure is: well number/depth.

Download (801KB)
4. Fig. 3. Classification diagrams for dacites of the Vorontsov terrane: (a) (Na2O + K2O)–SiO2; (b) A/CNK– A/NK; (c) FeOtot/(FeOtot + MgO)–SiO2; (d) (Na2O + K2O – CaO)–SiO2.

Download (271KB)
5. Fig. 4. Distribution diagrams of petrogenic oxides.

Download (236KB)
6. Fig. 5. Distribution of rare earths normalized to chondrite (a) and distribution of small and rare (b) elements in dacites normalized to primitive mantle.

Download (173KB)
7. Fig. 6. The location of the age determination points on the CL images of zircons from the metadacites of the Vorontsov terrane. The point numbers in the figure correspond to the analysis numbers in Table 2.

Download (458KB)
8. Fig. 7. Results of U-Pb dating of zircon from metadacites of Vorontsov terrane by SIMS method.

Download (147KB)
9. Fig. 8. Results of Sm-Nd studies of metadacytes of the Vorontsov terrane. Data on granites of the Vorontsov terrane from (Savko et al., 2014).

Download (155KB)
10. Fig. 9. Discriminant diagrams for metadacites of the Vorontsov terrane: (a) – by (Pearce, 1996); (b) – by (Whalen et al., 1987).

Download (167KB)
11. Fig. 10. Compositions of dacites of the Vorontsov terrane on discriminant diagrams for adakites (Drummond, Defant, 1990).

Download (111KB)
12. Fig. 11. The results of modeling the formation of dacites and rhyolites.

Download (100KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies