Clorine Solubility in Silicate Melts: New Experiments and Thermodynamic Mixing Model

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present new experimental data on Cl solubility in model basalt melts of eutectic compositions diopside (Di)–albite (Ab) and Di–anorthite ± quartz (Qtz). The starting glasses were equilibrated with aqueous fluid H₂O-NaCl-CaCl₂ at 4 kbar in the temperature range 900–1200°C. The experiments show that the Cl solubility decreases with increasing NaCl in the fluid. Ca-Na partitioning between melts and fluid is weekly temperature dependent and resembles that of the plagioclase-fluid system. The new experimental data, along with the previously published results on the model granite melting in the presence of (Na, K)Cl brines (Aranovich et al., 2013) are used to calibrate an empirical thermodynamic model for the salt species (NaCl, KCl, CaCl₂) in silicate melt. Calculations show that Cl solubility in the haplogranite melt decreases with increasing K/Na ratio in the fluid (and, correspondingly, melt). At high pressure (10 kbar) Cl solubility in the granite increases with increasing H₂O content. Calculated phase diagram for a simple pseudo-ternary system Ab–H₂O–NaCl demonstrates complex phase relations and, correspondingly, evolution of the H₂O and NaCl concentrations in the melt. Literature data on the variations of H₂O and NaCl in the melt and fluid inclusions in Qtz from the granite of Badzhal tin deposit is used to illustrate complex evolution of a fluid-magmatic system.

Full Text

Restricted Access

About the authors

L. Y. Aranovich

Institute of Geology of OreDeposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences; Institute of Experimental Mineralogy, Russian Academy of Sciences

Author for correspondence.
Email: lyaranov@igem.ru
Russian Federation, Moscow; Chernogolovka, Moscow region

M. A. Golunova

Institute of Geology of OreDeposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences; Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: lyaranov@igem.ru
Russian Federation, Moscow; Chernogolovka, Moscow region

J.A. D. Connolly

Institute of Geochemistry and Petrology, Swiss Federal Institute of Technology

Email: lyaranov@igem.ru
Switzerland, CH-8092 Zurich

M. V. Ivanov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: lyaranov@igem.ru
Russian Federation, Saint Petersburg

References

  1. Аранович Л.Я. Минеральные равновесия многокомпонентных твердых растворов. М.: Наука, 1991. 253 с.
  2. Аранович Л.Я. Роль рассолов в высокотемпературном метаморфизме и гранитизации // Петрология. 2017. Т. 25. № 5. С. 491–503.
  3. Бортников Н.С., Аранович Л.Я., Кряжев С.Г. и др. Баджальская оловоносная магматогенно-флюидная система (Дальний Восток, Россия): Переход от кристаллизации гранитов к гидротермальному отложению руд // Геология рудн. месторождений. 2019. Т. 61. № 3. С. 3–31.
  4. Иванов М.В. Термодинамическая модель флюидной системы H2O–CO2–NaCl–CaCl2 при P-T параметрах средней и нижней коры // Петрология. 2023. Т. 31. № 4. С. 408–418.
  5. Иванов М.В., Бушмин С.А., Аранович Л.Я. Уравнения состояния для растворов NaCl и CaCl2 произвольной концентрации при температурах 423.15 K-623.15 K и давлении до 5 кбар // Докл. АН. 2019. Т. 481. № 6. С. 653–657.
  6. Луканин О.А. Распределение хлора между расплавом и водно-хлоридной флюидной фазой в процессе дегазации магм. Сообщение I. Дегазация расплавов при снижении давления // Геохимия. 2015. № 9. С. 801–827.
  7. Луканин О.А. Распределение хлора между расплавом и водно-хлоридной флюидной фазой в процессе дегазации магм. Сообщение II. Дегазация расплавов при их кристаллизации // Геохимия. 2016. № 8. С. 685–707.
  8. Рубцова Е.А., Тагиров Б.Р., Акинфиев Н.Н. и др. Совместная растворимость Cu и Ag в хлоридных гидротермальных флюидах (350–650°C, 1000–1500 бар) // Геология рудн. месторождений. 2023. Т. 65. № 1. С. 15–31.
  9. Рябчиков И.Д. Термодинамика флюидной фазы гранитоидных магм. М.: Наука, 1975. 234 с.
  10. Чевычелов В.Ю. Распределение летучих компонентов (Cl, F, CO2) в водонасыщенных флюидно-магматических системах // Петрология. 2019. Т. 27. № 6. С. 638–657. https://doi.org/10.31857/S0869-5903276638-657
  11. Шапошников В.В., Аранович Л.Я. Экспериментальное изучение условий плавления модельного гранита в присутствии щелочно-карбонатных растворов при давлении 400 Мпа // Геохимия. 2015. № 9. C. 855–861.
  12. Aranovich L.Y., Newton R.C. H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium // Contrib. Mineral. Petrol. 1996. V. 125. P. 200–212.
  13. Aranovich L.Y., Newton R.C. H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium // Contrib. Mineral. Petrol. 1997. V. 127. P. 261–271.
  14. Aranovich L.Y., Safonov O.G. Halogens in high-grade metamorphism. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. 2018. P. 713–757. https://doi.org/10.1007/978-3-319-61667-4_11
  15. Aranovich L.Y., Newton R.C., Manning C.E. Brine-assisted anatexis: Experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions // Earth Planet. Sci. Lett. 2013. V. 374. P. 111–120.
  16. Andreeva O.A., Yarmolyuk V.V., Andreeva I.A., Borisovskiy S.E. Magmatic evolution of Changbaishan Tianchi Volcano, China–North Korea: evidence from mineral-hosted melt and fluid inclusions // Petrology. 2018. V. 26. № 5. P. 515–545.
  17. Blundy J., Afanasyev A., Tattitch B. et al. The economic potential of metalliferous sub-volcanic brines // R. Soc. Open Sci. 2021. V. 8. № 6. https://doi.org/10.1098/rsos.202192
  18. Borisov A., Aranovich L.Y. Zircon solubility in silicate melts: New experiments and probability of zircon crystallization in deeply evolved basic melts // Chem. Geol. 2019. V. 510. P. 103–112.
  19. Chevychelov V.Y., Suk N.I. Influence of the composition of magmatic melt on the solubility of metal chlorides at pressures of 0.1–3.0 kbar // Petrology. 2003. V. 11. P. 62–74.
  20. Connolly J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation // Earth Planet. Sci. Lett. 2005. V. 236. P. 524–541.
  21. Connolly J.A.D. A primer in Gibbs energy minimization for geophysicists // Petrology. 2017. V. 25. P. 526–534.
  22. Darken L.S. Thermodynamics of binary metallic solutions // Metallurgical Society of AIME Transactions. 1967. V. 239. P. 80–89.
  23. Dalou C., Mysen B.O. The effect of H2O on F and Cl solubility and solution mechanisms of in aluminosilicate melts at high pressure and high temperature // Amer. Mineral. 2015. V. 100. P. 633–643.
  24. Dolejš D., Zajacz Z.D.E. Halogens in silicic magmas and their hydrothermal systems. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes / Part of the Springer Geochemistry book series (SPRIGEO). 2018. P. 431–541. https://doi.org/10.1007/978-3-319-61667-4_7
  25. Evans K.A., Mavrogenes J.A., O’Neill H.S. et al. A preliminary investigation of chlorine XANES in silicate glasses // Geochemistry, Geophysics, Geosystems. 2008. V. 9. № 10. https://doi.org/10.1029/2008GC002157
  26. Filiberto J., Treiman A.H. The effect of chlorine on the liquidus of basalt: first results and implications for basalt genesis on Mars and Earth // Chem. Geol. 2009. V. 263. Р. 60–68. https://doi.org/10.1016/j.chemgeo.2008.08.025
  27. Goldfarb R.J., Pitcairn I. Orogenic gold: is a genetic association with magmatism realistic? // Mineral. Deposita. 2022. V. 58. P. 5–35. https://doi.org/10.1007/s00126-022-01146-8
  28. Holland H.D. Granites, solutions, and base metal deposits // Econom. Geol. 1972. V. 67. P. 281–301.
  29. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. P. 333–383.
  30. Hsu Y.-J., Zajacz Z., Ulmer P., Heinrich C.A. Chlorine partitioning between granitic melt and H2O-CO2-NaCl fluids in the Earth’s upper crust and implications for magmatic-hydrothermal ore genesis // Geochim. Cosmochim. 2019. Acta. V. 261. P. 171–190.
  31. Kouzmanov K., Pokrovski G.S. Hydrothermal controls on metal distribution in porphyry Cu(–Mo-Au) systems // Econom. Geol. Spec. Publ. 2012. V. 16. Р. 573–618. https://doi.org/10.5382/SP.16.22.
  32. Kovalenko V.I., Naumov V.B., Yarmolyuk V.V., Dorofeeva V.A. Volatile components (H2O, CO2, Cl, F, and S) in magmas of intermediate and acid compositions from distinct geodynamic settings: Evidence from melt inclusions and chill glasses // Petrology. 2000. V. 8. P. 525–556.
  33. Kusebauch C., Timm J., Whitehouse M.J. et al. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes // Geochim. Cosmochim. Acta. 2015. V. 170. P. 225–246.
  34. Papale P., Moretti R., Barbato D. The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts // Chem. Geol. 2006. V. 229. P. 78–95.
  35. Patiño Douce A.E., Roden M.F., Chaumba J. et al. Compositional and the halogen and water budgets of planetary mantles // Chem. Geol. 2011. V. 288. P. 14–31.
  36. Safonov O.G., Aranovich L.Y. Alkali control of high-grade metamorphism and granitization // Geoscience Frontiers. 2014. V. 5. P. 711–727. https://doi.org/10.1016/j.gsf.2014.03.010
  37. Shmulovich K.I., Graham C. Plagioclase–aqueous solution equilibrium: concentration dependence // Petrology. 2008. V. 16. Р. 177–192.
  38. Tattitch B.C., Blundy J.D. Cu-Mo partitioning between felsic melts and saline-aqueous fluids as a function of XNaCleq, fO2, and fS2 // Amer. Mineral. 2017. V. 102. Р. 1987–2006. https://doi.org/10.2138/am-2017-5998
  39. Tenner T.J., Lange R.A., Downs R.T. The albite fusion curve re-examined: New experiments and the high-pressure density and compressibility of high albite and NaAlSi3O8 liquid // Amer. Mineral. 2007. V. 92. P. 1573–1585.
  40. Thomas R.W., Wood B.J. The effect of composition on chlorine solubility and behavior in silicate melts // Amer. Mineral. 2023. V. 108. P. 814–825.
  41. Webster J.D., Vetere F., Botcharnikov R.E. et al. Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250°C: Applications to magmas of Augustine Volcano, Alaska // Amer. Mineral. 2015. V.100. P. 522–535.
  42. White R.W., Powell R., Holland T.J.B. et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems // J. Metamorph. Geol. 2014. V. 32. P. 261–286. https://doi.org/10.1111/jmg.12071
  43. Witham C.S., Webster H.N., Hort M.C. et al. Modeling concentrations of volcanic ash encountered by aircraft in past eruptions // Atmospheric Environment. 2012. V. 48. P. 219–229.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (1MB)
3. Fig.2

Download (221KB)
4. Fig.3

Download (431KB)
5. Fig.4

Download (215KB)
6. Fig.5

Download (207KB)
7. Fig.6

Download (278KB)
8. Fig.7

Download (266KB)
9. Fig.7

Download (114KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies