Sources of Cu-Rich Sulfide Mineralization and high-Ni Olivine of the Rudnaya Dyke (Imangda Junction, Norilsk Region): Based on Compositional, Isotope and Model Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Rudnaya dyke of the Imangda ore junction is composed of the weakly differentiated olivine-bearing to olivine gabbrodolerites with sulfide globules and disseminated sulfides of (pentlandite-pyrrhotite)-chalcopyrite-cubanite composition. Along with cogenetic sulfide mineralization, dyke’s gabbrodolerites contain xenoliths of hornfelsed basalts, abundant amygdales and rare grains of zoned Ol-1 Fo90-47 with 0.5–0.06 wt % NiO that coexist with subhedral olivine Fo74-36 of the second generation. Modeling in the COMAGMAT and alphaMELTS programs showed that high-Mg olivine 1 with Cr-spinel inclusions could not be crystallized from a Fe-enriched tholeiitic magma that is parental for the dyke with 4.8–7.3 wt % MgO and 11.6–16.7 wt % total Fe2O3. The trend of variations and high Ni up to 0.5 wt. % in the cores of xenocrystic olivine Fo90-76 in contrast to maximum Fo83 and 0.4 wt. % NiO in olivine from the ore-bearing intrusions and picritic basalts of the Norilsk region point toward the presence of picritic cumulates, which magma had not exchanged with sulfide liquid. Platinum group element (PGE) abundances increase (up to 2.2 ppm) with Cu/Ni in the whole rocks as well as with proportions of pentlandite in a sulfide association. A specific chalcophile metal distribution, which is characterized by Ni, Os and Ir minima, elevated Cu/Ni (5–15) and Cu/Pd (3200–10 900) as well as lower both PGE tenor of sulfides (2–65 ppm) and Pd content in pentlandite (<175 ppm) compared to typical of ore-bearing intrusions, suggests that Cu-rich sulfide mineralization was not mechanically captured from highly fractionated sulfide fractions of ore-bearing magmas but is cogenetic with a magma of the dyke. Sulfide saturation, near-simultaneous with fluid saturation and degassing, was achieved due to assimilation of sedimentary sulfur and volatiles from Devonian evaporites in the dyke conduit that is supported by the heavy S isotope composition of dyke’s sulfides with the average δ34S = 14.7 ±1.1‰ (n = 31), close to the values in sulfides from the endocontact zones of the ore-bearing Imangda intrusions hosted by Devonian strata. The initial isotopic characteristics of dyke’s rocks (Sri 0.70517–0.70532, ɛNd from –0.4 to 0.8) imply its comagmatic origin with the Norilsk-type intrusions whereas the overall data do not exclude even its spatial connection with an upper crustal conduit system of the ore-bearing magmas.

About the authors

V. D. Brovchenko

Institute of Geology of Ore Deposits Mineralogy, Petrography, and Geochemistry,
Russian Academy of Sciences

Author for correspondence.
Email: valeriiabrovchenko@gmail.com
Russia, Moscow

A. A. Ketrov

Norilsk Nickel Technical Services

Email: valeriiabrovchenko@gmail.com
Russia, St. Petersburg

Y. D. Gritsenko

Institute of Geology of Ore Deposits Mineralogy, Petrography, and Geochemistry,
Russian Academy of Sciences; Norilsk Nickel Technical Services

Email: valeriiabrovchenko@gmail.com
Russia, Moscow; Russia, St. Petersburg

Y. O. Larionova

Institute of Geology of Ore Deposits Mineralogy, Petrography, and Geochemistry,
Russian Academy of Sciences

Email: valeriiabrovchenko@gmail.com
Russia, Moscow

E. V. Kovalchuk

Institute of Geology of Ore Deposits Mineralogy, Petrography, and Geochemistry,
Russian Academy of Sciences

Email: valeriiabrovchenko@gmail.com
Russia, Moscow

I. V. Pshenitsyn

Faculty of Geology, Moscow State University

Email: valeriiabrovchenko@gmail.com
Russia, Moscow

G. Costin

Department of Earth, Environmental and Planetary Sciences, Rice University

Email: valeriiabrovchenko@gmail.com
USA, Houston

M. A. Yudovskaya

Institute of Geology of Ore Deposits Mineralogy, Petrography, and Geochemistry,
Russian Academy of Sciences; CIMERA, School of Geosciences, University of Witwatersrand

Email: valeriiabrovchenko@gmail.com
Russia, Moscow; South Africa, Wits

I. A. Kirillina

Institute of Geology of Ore Deposits Mineralogy, Petrography, and Geochemistry,
Russian Academy of Sciences

Email: valeriiabrovchenko@gmail.com
Russia, Moscow

S. F. Sluzhenikin

Institute of Geology of Ore Deposits Mineralogy, Petrography, and Geochemistry,
Russian Academy of Sciences

Email: valeriiabrovchenko@gmail.com
Russia, Moscow

References

  1. Генкин А.Д., Дистлер В.В., Гладышев Г.Д. и др. Сульфидные медно-никелевые руды Норильских месторождений. М.: Наука, 1981. 235 с.
  2. Горбачев Н.С., Шаповалов Ю.Б., Костюк А.В. и др. Фазовые соотношения в системе Fe–S–С при Р = 0.5 ГПа, Т = = 1100–1250°С: расслоение Fe–S–С-расплава и его роль в формировании магматических сульфидных месторождений // Докл. АН. 2021. Т. 497. № 1. С. 23–29.
  3. Гриненко Л.Н., Степанов В.К. Изотопные соотношения и содержания серы в дифференцированных интрузиях Имангдинского рудного узла // Геохимия. 1985. № 10. С. 1406–1416.
  4. Дистлер В.В., Гроховская Т.Л., Евстигнеева Т.Л. и др. Петрология сульфидного магматического рудообразования. М.: Наука, 1988. 230 с.
  5. Днепровская М.Б., Френкель М.Я., Ярошевский А.А. Количественная модель формирования расслоенности Талнахского интрузива // Построение моделей рудообразующих систем. Новосибирск: Наука, 1987. С. 96–106.
  6. Дюжиков O.A., Дистлер В.В., Струнин Б.М. и др. Геология и рудоносность Норильского района. М.: Наука, 1988. 279 с.
  7. Золотухин В.В., Щедрин Н.Ф. Дифференцированные интрузии Имангдинского рудного узла. Новосибирск: Наука, 1977. 135 с.
  8. Изотопная геология норильских месторождений / Под ред. О.В. Петрова. СПб.: ВСЕГЕИ, 2017. 348 с.
  9. Карандашев В.К., Хвостиков В.А., Носенко С.Ю., Бурмий Ж.П. Использование высокообогащенных стабильных изотопов при анализе образцов горных пород, грунтов, почв и донных отложений методом масс-спектрометрии с индуктивно-связанной плазмой // Заводская лаборатория. Диагностика материалов. 2016. Т. 82. № 7. С. 6–15.
  10. Кетров А.А., Юдовская М.А., Шелухина Ю.С. и др. Источники и эволюция изотопного состава серы сульфидов Хараелахского и Пясино-Вологочанского интрузивов (Норильский рудный район) // Геология рудн. месторождений. 2022. Т. 64. № 6. С. 657–686.
  11. Криволуцкая Н.А. Мантийная природа изотопно-тяжелой серы в рудах Норильских месторождений // Докл. АН. 2014. Т. 454. № 3. С. 319–319.
  12. Криволуцкая Н.А., Соболев А.В., Кузьмин Д.В., Свирская Н.М. Уникальные зональные оливины из ультрабазит-базитового массива Норильского района // Докл. АН. 2009. Т. 429. № 4. С. 518–522.
  13. Пшеницын И.В., Арискин А.А., Николаев Г.С. и др. Морфология, минералогия и состав сульфидных капель в пикродолеритах из придонных апофиз Йоко-Довыренского расслоенного интрузива // Петрология. 2020. Т. 28. № 3. С. 280–297.
  14. Радько В.А. Фации интрузивного и эффузивного магматизма Норильского района. СПб.: Картографическая фабрика ВСЕГЕИ, 2016. 226 с.
  15. Рябов В.В., Шевко А.Я. Гора М.П. Магматические образования Норильского района. Новосибирск: Нонпарель, 2001. 408 с.
  16. Служеникин С.Ф., Малич К.Н., Юдовская М.А. и др. Нижнеталнахский тип интрузивов в Норильском рудном районе // Петрология. 2023. Т. 31. № 5.
  17. Соболев А.В., Криволуцкая Н.А., Кузьмин Д.В. Петрология родоначальных расплавов и мантийных источников магм Сибирской трапповой провинции // Петрология. 2009. Т. 17. № 3. С. 276–310.
  18. Туровцев Д.М. Контактовый метаморфизм Норильских интрузий. М.: Науч. мир, 2002. 319 с.
  19. Чайка И.Ф., Изох А.Э., Калугин В.М. и др. Оливин и хромшпинелиды месторождения Норильск-1: особенности состава и петрологические следствия // Геосферные исследования. 2022. № 2. С. 78–100.
  20. Шадрин Л.М., Федоренко В.А., Сухарева М.С. и др. Выявление и геолого-петрологическое исследования апофиз дифференцированных интрузий Норильского района с целью поисков никеленосных массивов и их ветвей, перспективных на богатые руды. Норильск: Фонды НКГРЭ, 1986.
  21. Шевко А.Я., Смирнов С.З., Калугин В.М., Гора М.П. Идентификация боратов интрузии Норильск-1 с использованием рамановской спектроскопии // Материалы XIII Всероссийского петрографического совещания по петрологии и геодинамики геологических процессов. 06‒13 сентября 2021. Иркутск. 2021. Т. 3. С. 234–237.
  22. Щедрин Н.Ф., Золотухин В.В. О дайках долеритов и габбродолеритов в Имангдинском районе (северо-западный борт Тунгусской синеклизы) и их поисковом значении на сульфидные медно-никелевые руды // Геология и геофизика. 1980. № 3. С. 35–48.
  23. Ariskin A.A., Bychkov K.A., Nikolaev G.S., Barmina G.S. The COMAGMAT-5: Modeling the effect of Fe-Ni sulfide immiscibility in crystallizing magmas and cumulates // J. Petrol. 2018. V. 59. № 2. P. 283–298.
  24. Arndt N.T., Czamanske G.K., Walker R.J. et al. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits // Econom. Geol. 2003. V. 98. № 3. P. 495–515.
  25. Barnes S.J., Mungall J.E. Blade-shaped dikes and nickel sulfide deposits: A model for the emplacement of ore-bearing small intrusions // Econom. Geol. 2018. V. 113. № 3. P. 789–798.
  26. Barnes S.-J., Cox R.A., Zientek M.L. Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezhy Creek mine, Norilsk, Russia // Contrib. Mineral. Petrol. 2006. V. 152. P. 187–200.
  27. Barnes S.J., Godel B., Gürer D. et al. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides // Econom. Geol. 2013. V. 108. № 8. P. 1971–1982.
  28. Barnes S.J., Mungall J.E., Le Vaillant M. et al. Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Disseminated and net-textured ores // Amer. Mineral. 2017. V. 102. № 3. P. 473–506.
  29. Belousov A., Belousova M., Edwards B. et al. Overview of the precursors and dynamics of the 2012–2013 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia // J. Volcanol. Geothermal Res. 2015. V. 307. P. 22–37.
  30. Brovchenko V.D., Sluzhenikin S.F., Kovalchuk E.V. et al. Platinum group element enrichment of natural quenched sulfide solid solutions, the Norilsk-1 deposit, Russia // Econom. Geol. 2020. V. 115. № 6. P. 1343–1361.
  31. Brovchenko V., Merkulova M., Sittner J. et al. X-ray absorption records of Pd2+ on Ni site in pentlandite // Amer. Mineral. 2023.https://doi.org/10.2138/am-2022-8704
  32. Cabri L.J. New data on phase relations in the Cu–Fe–S system // Econom. Geol. 1973. V. 68. P. 443–454.
  33. DePaolo D.J., Wasserburg G.J. Nd isotopic variations and petrogenetic models // Geophysical Res. Lett. 1976. V. 3. № 5. P. 249–252.
  34. Duran C.J., Barnes S.J., Pleše P. et al. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia) // Ore Geol. Rev. 2017. V. 90. P. 326–351.
  35. Gudmundsson A. Formation of dykes, feeder-dykes, and the intrusion of dykes from magma chambers // Bull. Volcanologique. 1984. V. 47. № 3. P. 537–550.
  36. Grinenko L.I. Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform // Int. Geol. Rev. 1985. V. 27. № 6. P. 695–708.
  37. Gritsenko Y.D., Kondrikova A.P., Gilbricht S. et al. Quantitative assessment of the relative roles of sulfide liquid collection, magmatic degassing and fluid-mediated concentration of PGE in low-sulfide ores of the Norilsk intrusions // Ore Geol. Rev. 2022. 105042.
  38. Hawkesworth C.J., Lightfoot P.C., Fedorenko V.A. et al. Magma differentiation and mineralisation in the Siberian continental flood basalts // Lithos. 1995. V. 34. № 1–3. P. 61–88.
  39. Kitakaze A., Machida T., Komatsu R. Phase relations in the Fe–Ni–S system from 875 to 650°C // Canad. Mineral. 2016. V. 54. P. 1175–1186.
  40. Kostitsyn Y., Krivolutskaya N., Somsikova A.V. et al. Geochemical features of potentially ore-bearing mafic intrusions at the Eastern Norilsk Region and their relationships with lavas (NW Siberian Traps Province) // Minerals. 2023. V. 13. № 2. P. 213.
  41. Kullerud G., Yund R.A., Moh G.H. Phase relations in the Cu–Fe–S, Cu–Ni–S, and Fe–Ni–S systems // Econom. Geol. Monograph 4. 1969. P. 323–343.
  42. Latyshev A.V., Rad’ko V.A., Veselovskiy R.V. et al. Correlation of the Permian-Triassic ore-bearing intrusions of the Norilsk region with the volcanic sequence of the Siberian Traps based on the paleomagnetic data // Econom. Geol. 2020. V. 115. № 6. P. 1173–1193.
  43. Lightfoot P.C. Hawkesworth C.J., Hergt J. et al. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia // Contrib. Mineral. Petrol. 1993. V. 114. P. 171–188.
  44. Liu Y., Brenan J. Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (Mss), intermediate solid solution (Iss) and sulfide liquid at controlled conditions // Geochim. Cosmochim. Acta. 2015. V. 159. P. 139–161.
  45. Mavrogenes J.A., O’Neill H.S.C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas // Geochim. Cosmochim. Acta. 1999. V. 63. № 7–8. P. 1173–1180.
  46. Naldrett A.J., Wilson A., Kinnaird J. et al. The origin of chromitites and related PGE mineralization in the Bushveld Complex: new mineralogical and petrological constraints // Mineral. Depos. 2012. V. 47. P. 209–232.
  47. Palme H., O’Neill H.S.C. Cosmochemical estimates of mantle composition // Eds. H.D. Holland, K.K. Turekian. Treatise on Geochemistry (Second Edition). Oxford: Elsevier, 2014. V. 3. P. 1–39.
  48. Pang K.N., Arndt N., Svensen H. et al. A petrologic, geochemical and Sr–Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia // Contrib. Mineral. Petrol. 2013. V. 165. P. 683–704.
  49. Prichard H.M., Hutchinson D., Fisher P.C. Petrology and crystallization history of multiphase sulfide droplets in a mafic dike from Uruguay: implications for the origin of Cu-Ni-PGE sulfide deposits // Econom. Geol. 2004. V. 99. № 2. P. 365–376.
  50. Rakhimov I.R., Vishnevskiy A.V., Saveliev D.E. Geochemical evolution of PGE-sulfide mineralization of the Khudolaz differentiated complex in the South Urals: The role of R-factor and hydrothermal alteration // Ore Geol. Rev. 2021. V. 138. 104411.
  51. Ripley E.M., Li C. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits // Econom. Geol. 2003. V. 98. № 3. P. 635–641.
  52. Sinyakova E., Kosyakov V., Distler V., Karmanov N. Behavior of Pt, Pd, and Au during crystallization of Cu-rich magma-tic sulfide minerals // Canad. Mineral. 2016. V. 54. № 2. P. 491–509.
  53. Shea T., Lynn K.J., Garcia M.O. Cracking the olivine zoning code: Distinguishing between crystal growth and diffusion // Geology. 2015. V. 43. № 10. P. 935–938.
  54. Sluzhenikin S.F., Yudovskaya M.A., Barnes S.J. et al. Low-sulfide platinum group element ores of the Norilsk-Talnakh camp // Econom. Geol. 2020. V. 115. № 6. P. 1267–1303.
  55. Smith P.M., Asimow P.D. Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models // Geochem. Geophys. Geosyst. 2005. V. 6. https://doi.org/10.1029/2004GC000816
  56. Tuba G., Molnár F., Ames D.E. et al. Multi-stage hydrothermal processes involved in “low-sulfide” Cu-(Ni)-PGE mineralization in the footwall of the Sudbury Igneous Complex (Canada): Amy Lake PGE zone, East Range // Mineral. Depos. 2014. V. 49. № 1. P. 7–47.
  57. Velivetskaya T.A., Ignatiev A.V., Yakovenko V.V. et al. An improved femtosecond laser-ablation fluorination method for measurements of sulfur isotopic anomalies (∆33S and ∆36S) in sulfides with high precision // Rapid Communications in Mass Spectrometry. 2019. V. 33. № 22. P. 1722–1729.
  58. Vishnevskiy A.V., Cherdantseva M.V. Merenskyite and other precious metal minerals in sulfide blebs from the Rudniy ultramafic-mafic intrusion, Northwest Mongolia // Canad. Mineral. 2016. V. 54. № 2. P. 519–535.
  59. Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. № 3. P. 291–320.
  60. Yao Z., Mungall J.E. Linking the Siberian Flood Basalts and Giant Ni-Cu-PGE Sulfide Deposits at Norilsk // J. Geophys. Res.: Solid Earth. 2021. V. 126. № 3. e2020JB020823.
  61. Zelensky M., Kamenetsky V.S., Nekrylov N. et al. Textural, morphological and compositional varieties of modern arc sulfides: a case study of the Tolbachik volcano, Kamchatka // Lithos. 2018. V. 318. P. 14–29.

Supplementary files


Copyright (c) 2023 В.Д. Бровченко, И.А. Кириллина, М.А. Юдовская, G. Costin, И.В. Пшеницын, Е.В. Ковальчук, Ю.О. Ларионова, Ю.Д. Гриценко, А.А. Кетров, С.Ф. Служеникин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies