Geodynamic of a Breakup of Western Part of the Karelian Craton: Data on 2.1 Ga Mafic Magmatism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mafic within-plate magmatism is the main source of information about the geodynamics of processes that lead to the breakup of continental blocks. The article discusses the problem of geodynamics of the split of the Archean supercraton Superia in the Middle Paleoproterozoic. The discussion is based on data on 2.1 Ga magmatism in the Karelian Craton, where basites of this age are represented by tholeiites of two geochemical types: depleted and enriched. Geochemically close to N-MORB, depleted tholeiites were studied in Northern Priladozhye where they form methadoleritic dike swarms at c. 2111 ± 6 Ma (U-Pb, SIMS, zircon) in the Khatunoiya locality, and pillow lavas and sills near Lake Maloye Janisjarvi. Enriched tholeiites were studied in the Lake Tulos locality where they form a large swarm of doleritic dikes at 2118 ± 5 Ma (U-Pb, ID-TIMS, baddeleyite). The results of these studies provide deeper insight into 2.1 Ga mafic magmatism. Depleted tholeiites with N-MORB geochemistry have a spatial distribution in the Karelian Craton and could be formed as a result of decompression melting of a depleted asthenospheric mantle, raising melts along the extension zones, and minimal contamination by the Archean crust. The simultaneous formation of enriched tholeiitic melts probably occurred at differentiation and crustal contamination of depleted tholeiites during melt migration through more rigid Archean crustal blocks. Data on basic magmatism with an age of 2.1 Ga in the Karelian craton, which are difficult to explain within the framework of the mantle plume rise model, are consistent with the model of lithosphere extension due to the retreat of the subduction zone in the northeastern framing of the craton, in the Lapland-Kola Ocean in the interval of 2.0–2.2 Ga years. The maximum thinning, discontinuity of the Archean continental lithosphere, and the opening of an oceanic basin at the western edge of the Karelian craton were probably controlled by the suture zone of the junction of the Neoarchean crust with the Paleoarchean blocks, a chain of which was traced in the west of the Karelian craton. An additional factor that led to breakup of the lithosphere 2.1 Ga ago could be the rise of a deep mantle plume in the Khern craton, which occupied a spatial position close to the Karelian craton in the Archean supercraton Superia.

About the authors

A. V. Samsonov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS

Author for correspondence.
Email: samsonovigem@mail.ru
Russia, Moscow

A. V. Stepanova

Institute of Geology, Karelian Research Centre, RAS

Email: samsonovigem@mail.ru
Russia, Petrozavodsk

E. B. Salnikova

Institute of Precambrian Geology and Geochronology, RAS

Email: samsonovigem@mail.ru
Russia, Saint-Petersburg

Y. O. Larionova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS

Email: samsonovigem@mail.ru
Russia, Moscow

A. N. Larionov

Centre for Isotopic Research, Russian Geological Research Institute

Email: samsonovigem@mail.ru
Russia, Saint-Petersburg

References

  1. Васильева Т.И. Раннепротерозойские дайки метабазитов в купольных структурах Северного Приладожья как индикаторы геодинамической обстановки // Изв. ВУЗов. Геология и разведка. 2000. № 1. С. 19–29.
  2. Голубев А.И., Светов А.П. Геохимиия базальтов платформенного вулканизма Карелии. Петрозаводск: Карельский филиал АН СССР, 1983. 192 с.
  3. Кратц К.О. Геология карелид Карелии. Л.: Из-во АН СССР, 1963. 201 с.
  4. Леонов Ю.Г. Континентальный рифтогенез: современные представления, проблемы и решения // Геотектоника. 2001. № 2. С. 3–16.
  5. Матреничев А.В., Матреничев В.А. Петрология людиковийского вулканизма Онежской структуры и Раахе-Ладожской зоны, Балтийский щит // Под ред. С.Д. Великославинского, А.М. Ларина. Сб. трудов молодых ученых ИГГД РАН. СПб.: Изд-во Политехнического ун-та, 2010. С. 223–255.
  6. Матреничев В.А., Степанов К.И., Пупков О.М. Стратиграфия и особенности вещественного состава раннепротерозойских метавулканитов Сортавальского поднятия (Северное Приладожье) // Вест. СПб ун-та. 2004. Сер. 7. Геология. География. № 2. С. 31–44.
  7. Мыскова Т.А., Беляцкий Б.В., Середа Е.Е. и др. Палеопротерозойские дайки базитов в зоне сочленения Фенно-Карельского кратона и Свекофеннского орогена Фенноскандинавского щита (состав, возраст, происхождение) // Геохимия. 2022. Т. 67. № 11. С. 1039–1071.
  8. Онежская палеопротерозойская структура (геология, тектоника, глубинное строение и минерагения) // Под ред. Л.В. Глушанина, Н.В. Шарова, В.В. Щипцова. Петрозаводск: КарНЦ РАН, 2011. 431 с.
  9. Ранний докембрий Балтийского щита. СПб.: Наука, 2005. 711 с.
  10. Самсонов А.В., Носова А.А., Третяченко В.В. и др. Коллизионные швы в раннедокембрийской коре как фактор локализации алмазоносных кимберлитов (север Восточно-Европейского кратона) // Докл. АН. 2009. Т. 424. № 6. С. 796–801.
  11. Хейсканен К.И. Карельская геосинклиналь: Литологический анализ. Л.: Наука, 1980. 168 с.
  12. Хейсканен К.И. Палеогеография Балтийского щита в карельское время. Петрозаводск: КНЦ АН СССР. Ин-т геологии, 1990. 124 с.
  13. Шульдинер В.И., Козырева И.В., Балтыбаев Ш.К. Возрастное и формационное расчленение раннедокембрийских образований Северо-Западного Приладожья // Стратиграфия. Геол. корреляция. 1996. Т. 4. № 3. С. 11–22.
  14. Шульдинер В.И., Левченков О.А., Яковлева С.З. и др. Верхний карелий в стратиграфической шкале России: выбор нижней границы и региональные подразделения стратотипической области // Стратиграфия. Геол. корреляция. 2000. Т. 8. № 6. С. 20–33.
  15. Aldaajani T.Z., Almalki K.A., Betts P.G. Plume versus slab-pull: example from the Arabian Plate // Front. Earth Sci. 2021. V. 9. P. 700550.
  16. Ansdell K. M., MacNeill A., Delaney G.D., Hamilton M.A. Rifting and development of the Hearne craton passive margin: age constraint from the Cook Lake area, Wollaston Domain, Trans-Hudson Orogen, Saskatchewan // GeoCanada 2000 Conference. Extended Abstract. 2000.
  17. Aspler L.B., Cousens B.L., Chiarenzelli J.R. Griffin gabbro sills (2.11 Ga), Hurwitz Basin, Nunavut, Canada: long-distance lateral transport of magmas in western Churchill Province crust // Precambr. Res. 2002. V. 117. P. 269–294.
  18. Beniest A., Koptev A., Burov E. Numerical models for continental break-up: Implications for the South Atlantic// Earth Planet. Sci. Lett. 2017. V. 461. P. 176–189.
  19. Bercovici D., Long M.D. Slab rollback instability and supercontinent dispersal // Geophys. Res. Lett. 2014. V. 41. № 19. P. 6659–6666.
  20. Bleeker W. The late Archean record: a puzzle in ca. 35 pieces // Lithos. 2003. V. 71. № 2–4. P. 99–134.
  21. Bogdanova S.V., Gintov O.B., Kurlovich D.M. et al. Late Palaeoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotation during the assembly of supercontinent Columbia (Nuna) // Lithos. 2013. V. 174. P. 196–216.
  22. Bogdanova S.V., Gorbatschev R., Garetsky R.G. EUROPE|East European Craton // Reference Module in Earth Systems and Environmental Sciences. Elsevier, 2016.
  23. Bradley D.C. Passive margins through earth history // Earth-Sci. Rev. 2008. V. 91. № 1–4. P. 1–26.
  24. Bridgwater D., Scott D.J., Balagansky V.V. et al. Age and provenance of Early Precambrian metasedimentary rocks in the Lapland–Kola Belt, Russia: evidence from Pb and Nd isotopic data // Terra Nov. 2001. V. 13. № 1. P. 32–37.
  25. Buiter S.J.H., Torsvik T.H. A review of Wilson Cycle plate margins: f role for mantle plumes in continental break-up along sutures? // Gondwana Res. 2014. V. 26. № 2. P. 627–653.
  26. Burov E., Guillou-Frottier L., d’Acremont E. et al. Plume head–lithosphere interactions near intra-continental plate boundaries // Tectonophysics. 2007. V. 434. № 1–4. P. 15–38.
  27. Cawood P.A., Strachan R.A., Pisarevsky S.A. et al. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles // Earth Planet. Sci. Lett. 2016. V. 449. P. 118‒126.
  28. Cawood P.A., Hawkesworth C.J., Pisarevsky S.A. et al. Geological archive of the onset of plate tectonics // Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018. V. 376. № 2132. P. 20170405.
  29. Chaves A.O. Columbia (Nuna) supercontinent with external subduction girdle and concentric accretionary, collisional and intracontinental orogens permeated by large igneous provinces and rifts // Precambr. Res. 2021. V. 352. P. 106017.
  30. Collins W.J. Slab pull, mantle convection, and Pangaean assembly and dispersal // Earth Planet. Sci. Lett. 2003. V. 205. № 3–4. P. 225–237.
  31. Dal Zilio L., Faccenda M., Capitanio F. The role of deep subduction in supercontinent breakup // Tectonophysics. 2018. V. 746. P. 312–324.
  32. Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere // Geol. Soc. London, Mem. 2006. V. 32. № 1. P. 579–598.
  33. Dang Z., Zhang N., Li Z.-X. et al. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up // Commun. Earth Environ. 2020. V. 1. № 1. P. 1–11.
  34. Davey S.C., Bleeker W., Kamo S.L. et al. Evidence for a Single Large Igneous Province at 2.11 Ga across Supercraton Superia // J. Petrol. 2022. V. 63. № 5. P. 1–36.
  35. Dilek Y., Furnes H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere // GSA Bull. 2011. V. 123. № 3–4. P. 387–411.
  36. Elming S.-Å., Salminen J., Pesonen L.J. Paleo-Mesoproterozoic Nuna supercycle // Ancient Supercontinents and the Paleogeography of Earth. Elsevier, 2021. P. 499–548.
  37. Ernst R., Bleeker W. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present // Can. J. Earth Sci. 2010. V. 47. P. 695–739.
  38. Geoffroy L. Volcanic passive margins // Comptes Rendus Geosci. 2005. V. 337. № 16. P. 1395–1408.
  39. Geological map of the Fennoscandian shield, Scale 1 : 2 000 000, Koistinen T., Stephens M.B., Bogachev V., Nordgulen O., Wennerstrom M. and Korhonen J. // Geol. Surv. Finland. Norway and Sweden and Ministry of Natural Resources of the Russian Federation. 2001.
  40. Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematic of river water suspended material: implications for crustal evolution // Earth Planet. Sci. Lett. 1988. V. 87. P. 249–265.
  41. Hajnal Z., Lewryb J., White D., Ashton K. et al. The Sask Craton and Hearne Province margin: seismic reflection studies in the western Trans-Hudson Orogen // Can. J. Earth Sci. 2005. V. 42. № 4. P. 403–419.
  42. Halls H.C., Davis D.W., Stott G.M. et al. The Paleoproterozoic Marathon Large Igneous Province: new evidence for a 2.1 Ga long-lived mantle plume event along the southern margin of the North American Superior Province // Precambr. Res. 2008. V. 162. № 3–4. P. 327–353.
  43. Hölttä P., Heilimo E., Huhma H. et al. The Archaean Karelia and Belomorian Provinces, Fennoscandian Shield // Evolution of Archean Crust and Early Life Modern Approaches in Solid Earth Sciences. Eds. Y. Dilek, H. Furnes. Dordrecht: Springer Netherlands, 2014. P. 55–102.
  44. Hölttä P., Heilimo E., Huhma H. et al. Paleoarchean rocks in the Fennoscandian Shield // Eds. M.J.V. Kranendonk, V.C. Bennett, J.E. Hoffmann. Earth’s Oldest Rocks. Second Ed. 2019. Ch. 32. P. 819–835.
  45. Huang C., Zhang N., Li Z., Ding M. et al. Modeling the inception of supercontinent breakup: stress state and the importance of orogens // Geochem. Geophys. Geosyst. 2019. V. 20. № 11. P. 4830–4848.
  46. Huhma H. Sm-Nd, U-Pb and Pb-Pb isotopic evidence for the origin of the Early Proterozoic Svecokarelian crust in Finland // Geol. Surv. Finland. Bull. 1986. V. 337.
  47. Huhma H., Cliff R.A., Perttunen V., Sakko M. Sm-Nd and Pb isotopic study of mafic rocks associated with early Proterozoic continental rifting: the Perapohja schist belt in northern Finland // Contrib. Mineral. Petrol. 1990. V. 104. P. 369–379.
  48. Ivanikov V., Philipov N., Belaiatsky B. Geochemistry of the metavolcanic rocks from the Ladoga region: evidence for an Early Proterozoic oceanic crust // Geol. Surv. Finland. Spec. Paper 26. Espoo. 1998. P. 30.
  49. Klein E.M. Geochemistry of the igneous oceanic crust // Eds. H.D. Holland, R.R. Turekian. Treatise on Geochemistry. 2003. V. 3. P. 433–463.
  50. Keppie F. How subduction broke up Pangaea with implications for the supercontinent cycle // Geol. Soc. London. Spec. Publ. 2016. V. 424. № 1. P. 265–288.
  51. Kohonen J. From continental rifting to collisional crustal shortening – Paleoproterozoic Kaleva metasediments of the Hoytianen area in North Karelia, Finland // Geol. Surv. Finland. Bull. 1995. V. 380. 82 p.
  52. Koppers A.A.P., Becker T.W., Jackson M.G. et al. Mantle plumes and their role in Earth processes // Nat. Rev. Earth Environ. 2021. V. 2. № 6. P. 382–401.
  53. Koptev A., Calais E., Burov E. et al. Dual continental rift systems generated by plume–lithosphere interaction // Nat. Geosci. 2015. V. 8. № 5. P. 388–392.
  54. Koptev A., Cloetingh S., Ehlers T.A. Longevity of small-scale (‘baby’) plumes and their role in lithospheric break-up // Geophys. J. Int. 2021. V. 227. № 1. P. 439–471.
  55. Köykkä J., Lahtinen R., Huhma H. Provenance evolution of the Paleoproterozoic metasedimentary cover sequences in northern Fennoscandia: age distribution, geochemistry, and zircon morphology // Precambr. Res. 2019. V. 331. P. 105364.
  56. Lahtinen R., Garde A.A., Melezhik V.A. Paleoproterozoic evolution of Fennoscandia and Greenland // Episodes. 2008. V. 31. P. 20–28.
  57. Lahtinen R., Huhma H. A revised geodynamic model for the Lapland-Kola orogen // Precambr. Res. 2019. V. 330. P. 1–19.
  58. Lahtinen R., Huhma H., Kontinen A. et al. New constraints for the source characteristics, deposition and age of the 2.1–1.9 Ga metasedimentary cover at the western margin of the Karelian Province // Precambr. Res. 2010. V. 176. № 1–4. P. 77–93.
  59. Lahtinen R., Huhma H., Lahaye Y. et al. Archean–Proterozoic collision boundary in central Fennoscandia: Revisited // Precambr. Res. 2015. V. 261. P. 127–165.
  60. Lavecchia A., Thieulot C., Beekman F. et al. Lithosphere erosion and continental breakup: interaction of extension, plume upwelling and melting // Earth Planet. Sci. Lett. 2017. V. 467. P. 89–98.
  61. Li Z.X., Bogdanova S.V., Collins A.S. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis // Precambr. Res. 2008. V. 160. № 1–2. P. 179–210.
  62. Lovecchio J.P., Rohais S., Joseph P. et al. Mesozoic rifting evolution of SW Gondwana: a poly-phased, subduction-related, extensional history responsible for basin formation along the Argentinean Atlantic margin // Earth-Sci. Rev. 2020. V. 203. P. 103138.
  63. Lubnina N.V., Pisarevsky S.A., Söderlund U. et al. New palaeomagnetic and geochronological data from the Ropruchey sill (Karelia, Russia): implications for late Palaeoproterozoic palaeogeography // Eds. S. Mertanen, L.J. Pesonen, P. Sangchan. Supercontinent Symposiu. Finland. Programme and Abstracts. Geol. Surv. Finland. Espoo. 2012. P. 81–82.
  64. Melezhik V.A., Hanski E.J. Palaeotectonic and Palaeogeographic evolution of Fennoscandia in the Early Palaeoproterozoic // Reading the Archive of Earth’s Oxygenation, V. 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia – Drilling Early Earth Project Frontiers in Earth Sciences. Eds. V.A. Melezhik, A.R. Prave, A.E. Fallick et al. Berlin, Heidelberg: Springer, 2013. P. 111–178.
  65. Nance R.D., Murphy J.B., Santosh M. The supercontinent cycle: a retrospective essay // Gondwana Res. 2014. V. 25. № 1. P. 4–29.
  66. Niu Y.L. On the cause of continental breakup: a simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes // J. Asian Earth Sci. 2020. V. 194. 104367.
  67. Nykänen V.M., Vuollo J.I., Liipo J.P., Piirainen T.A. Transitional (2.1 Ga) Fe-tholeiitic-tholeiitic magmatism in the Fennoscandian Shield signifying lithospheric thinning during Palaeoproterozoic extensional tectonics // Precambr. Res. 1994. V. 70. № 1–2. P. 45–65.
  68. Ojakangas R.W., Marmo J.S., Heiskanen K.I. Basin evolution of the Paleoproterozoic Karelian supergroup of the Fennoscandian (Baltic) Shield // Sediment. Geol. 2001. V. 141–142. P. 255–285.
  69. Pearce J.A., Ernst R.E., Peate D.W., Rogers C. LIP printing: use of immobile element proxies to characterize Large Igneous Provinces in the geologic record // Lithos. 2021. V. 392–393. P. 106068.
  70. Peltonen P. Ophiolites // Key to the Evolution of the Fennoscandian Shield. Precambr. Geol. Finland. 2005. P. 237–278.
  71. Peltonen P., Kontinen A., Huhma H. Petrology and geochemistry of metabasalts from the 1.95 Ga jormua ophiolite, Northeastern Finland // J. Petrol. 1996. V. 37. № 6. P. 1359–1383.
  72. Perttunen V., Hanski E.J. Pre-quaternary rocks of the Törmäsjärvi and Koivu map-sheet areas. 2003. 92 p.
  73. Rollinson H., Pease V. Using geochemical data to understanding geological processes. New York: Cambridge University Press, Second Ed. 2021. 661 p.
  74. Rudnick R.L., Fountain D.M. Nature and composition of the continental crust: a lower crustal perspective // Rev. Geophys. 1995. V. 33. № 3. P. 267–309.
  75. Samsonov A.V., Tretyachenko V.V., Nosova A.A. et al. Sutures in the early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern east European Platform // Long Abstract for the 10th International Kimberlite Conference. Bangalor. India. 2012. 10IKC35.
  76. Sapin F., Ringenbach J.-C., Clerc C. Rifted margins classification and forcing parameters // Sci. Rep. 2021. V. 11. № 1. P. 1–17.
  77. Sorjonen-Ward P. Geological and structural framework and preliminary interpretation of the FIRE 3 and FIRE 3A reflection seismic profiles, central Finland // Geol. Surv. Finland. Spec. Pap. 2006. V. 43. P. 105–159.
  78. Stepanova A.V., Samsonov A.V., Salnikova E.B. et al. Paleoproterozoic continental MORB-type tholeiites in the Karelian craton: petrology, geochronology and tectonic setting // J. Petrol. 2014. V. 55. P. 1719–1751.
  79. Stepanova A.V., Azimov P., Samsonov A.V. et al. Paleoproterozoic ca. 2.2 Ga high-Cl metagabbro in the Belomorian province, Eastern Fennoscandian Shield: origin and tectonic implications // Lithos. 2021. V. 400–401. P. 106377.
  80. Stepanova A.V., Stepanov V.S., Larionov A.N. et al. Relicts of Paleoproterozoic LIPs in the Belomorian Province, eastern Fennoscandian Shield: barcode reconstruction for a deeply eroded collisional orogen // Geol. Soc. London. Spec. Publ. 2022. V. 518. № 1. P. 101–128.
  81. Tuisku P., Huhma H. Evolution of migmatitic granulite complexes: implications from Lapland Granulite Belt, Part II: isotopic dating // Bull. Soc. Finland. 2006. V. 78. № 2. P. 143.
  82. Vuollo J., Huhma H. Paleoproterozoic mafic dikes in NE Finland // Eds. M. Lehtinen, P.A. Nurmi, B.T. Rämö. Key to the Evolution of the Fennoscandian Shield. Precambr. Geol. Finland. 2005. P. 195–236.
  83. Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. № 3. P. 291–320.
  84. Wedepohl K.H., Hartmann G. The composition of the pri-mitive upper Earth’s mantle // Eds. H.O.A. Meyer, O.H. Leonardos. Kimberlites, related rocks and mantle xenoliths, Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, 1994. V. 1. P. 486–495.
  85. White W.M., Klein E.M. Composition of the oceanic crust // Treatise Geochem. Second Ed. 2014. P. 457–496.
  86. Wolstencroft M., Davies J.H. Breaking supercontinents; no need to choose between passive or active // Solid Earth. 2017. V. 8. № 4. P. 817–825.
  87. Wu G., Yang S., Liu W. et al. Switching from advancing to retreating subduction in the Neoproterozoic Tarim Craton, NW China: implications for Rodinia breakup // Geosci. Front. 2021. V. 12. № 1. P. 161–171.
  88. Zhang N., Dang Z., Huang C., Li Z.-X. The dominant driving force for supercontinent breakup: plume push or subduction retreat? // Geosci. Front. 2018. V. 9. № 4. P. 997–1007.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1016KB)
3.

Download (4MB)
4.

Download (3MB)
5.

Download (3MB)
6.

Download (1MB)
7.

Download (209KB)
8.

Download (225KB)
9.

Download (237KB)
10.

Download (242KB)
11.

Download (272KB)
12.

Download (263KB)

Copyright (c) 2023 А.В. Самсонов, А.В. Степанова, Е.Б. Сальникова, Ю.О. Ларионова, А.Н. Ларионов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies