Sulfide Mineralization in Pyrometamorphosed Upper Crustal Xenoliths, Bezymianny Volcano, Kamchatka

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bezymianny volcano supply on the surface numerous xenoliths, revealing the composition of the crust containing the magmatic system and the processes occurring within it. In this study, we present data on the xenoliths from the upper crust that were partially melted and recrystallized (pyrometamorphosed) in the shallow chamber of Bezymianny volcano. Some xenoliths contain relics of primary igneous associations, and some contain relics of prepyrometamorphic hydrothermally alteration. Thus, protoliths of pyrometamorphosed rocks could be reconstructed, and hydrothermal processes could be determined for rocks previously altered with fluids. The most common xenoliths are moderate-K andesites, basaltic andesites, and basalts from Kamen and Bezymianny volcanoes. During pyrometamorphism, a new microgranoblastic paragenesis forms, consisting of homogenous pyroxenes, plagioclase, and Fe-Ti oxides, sometimes surrounded by glass. Xenoliths of plateau basalts from the Klyuchevskaya group of volcanoes (high-K trachyandesitic basalts) are less common. Some of plateau basalt xenoliths contain trace of quartz-carbonate-sulfide mineralization, which was formed before the capture of xenoliths and their pyrometamorphism. A hydrothermally altered rock was melted and recrystallized after xenoliths were captured by magma, resulting in a Fe-wollastonite-hedenbergite association (sometimes with garnet), which is not typical for Bezymianny. The copper content of these xenoliths is anomalously high (up to 1500 ppm).

About the authors

V. O. Davydova

Lomonosov Moscow State University, Geological Departments

Author for correspondence.
Email: vestadav@gmail.com
Russia, Moscow

V. D. Shcherbakov

Lomonosov Moscow State University, Geological Departments

Email: vestadav@gmail.com
Russia, Moscow

N. A. Nekrylov

Fersman Mineralogical Museum RAS

Email: vestadav@gmail.com
Russia, Moscow

P. Yu. Plechov

Lomonosov Moscow State University, Geological Departments; Fersman Mineralogical Museum RAS

Email: vestadav@gmail.com
Russia, Moscow; Russia, Moscow

V. O. Yapaskurt

Lomonosov Moscow State University, Geological Departments

Email: vestadav@gmail.com
Russia, Moscow

References

  1. Давыдова В.О., Щербаков В.Д., Плечов П.Ю., Перепелов А.Б. Характеристика мафических включений в продуктах современных извержений вулкана Безымянный 2006–2012 гг. // Петрология. 2017. Т. 25. № 6. С. 609–634.
  2. Давыдова В.О., Плечов П.Ю., Щербаков В.Д., Перепелов А.Б. Ксенолиты высококалиевых трахиандезибазальтов в пирокластических отложениях вулкана Безымянный (Камчатка) // Геология и геофизика. 2018а. Т. 59. № 9. С. 1357–1371.
  3. Давыдова В.О., Щербаков В.Д., Плечов П.Ю. Оценки времени смешения магм в системе вулкана Безымянный (Камчатка) по данным диффузионной хронометрии // Вестн. МГУ. Сер. 4. Геология. 2018б. № 4. С. 52–58.
  4. Иванов Б.В. Некоторые особенности вулканизма Ключевской группы вулканов в связи с ее глубинным строением // Глубинное строение, сейсмичность и современная деятельность Ключевской группы вулканов. Владивосток: ДВНЦ АН СССР, 1976. С. 52–61.
  5. Иванов Б.В., Попруженко С.В., Апрелков С.Е. Глубинное строение Центрально-Камчатской депрессии и структурная позиция вулканов // Геодинамика и вулканизм Курило-Камчатской островодужной системы. 2001. С. 45–57
  6. Малышев А.И. Жизнь вулкана. Екатеринбург: Изд-во УрО РАН, 2000. 260 с.
  7. Мелекесцев И.В. Вулканизм и рельефообразование. М.: Наука, 1980. 212 с.
  8. Мелекесцев И.В., Волынец О.Н., Ермаков В.А. и др. Вулкан Шивелуч // Действующие вулканы Камчатки. М.: Наука, 1991. Т. 1. С. 82–97.
  9. Пийп Б.И. Ключевская сопка и ее извержения в 1944–1945 гг. и в прошлом // Тр. Лаборатории вулканологии. М.: Изд-во АН СССР, 1956. Вып. II. 309 с.
  10. Флеров Г.Б., Овсянников А.А. Вулкан Ушковский // Действующие вулканы Камчатки. М.: Наука, 1991. Т. 1. С. 156.
  11. Чурикова Т.Г., Гордейчик Б.Н., Иванов Б.В. Петрохимия пород вулкана Камень: сравнение с соседними вулканами Ключевской группы // Вулканология и сейсмология. 2012. № 3. С. 23–45.
  12. Almeev R.R., Kimura J-I., Ariskin A.A., Ozerov A.Yu. Decoding crystal fractionation in water-rich calk-alkaline magma from Bezymianny volcano, Kamchatka, Russia, using mineral and bulk rock chemistry // J. Volcanol. Geotherm. Res. 2013. V. 263. P. 141–171.
  13. Anderson A.T., Lindsley D.H. Model for the Ti magnetite or ilmenite geothermometers and oxygen barometers // Trans. Amer. Geophys. Union. 1985. V. 66. P. 416.
  14. Beard J.S., Lofgren G.E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb // J. Petrol. 1991. V. 32. № 2. P. 365–401.
  15. Beyer C., Frost D.J., Miyajima N. Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclo-gites // Contrib. Mineral. Petrol. 2015. V. 169. № 2. P. 1–21.
  16. Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitsky L.D. Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia // Bull. Volcanol. 1995. V. 57. № 6. P. 383–402.
  17. Braschi E., Francalanci L., Vougioukalakis G.E. Inverse differentiation pathway by multiple mafic magma refilling in the last magmatic activity of Nisyros Volcano, Greece // Bull. Volcanol. 2012. V. 74. № 5. P. 1083–1100.
  18. Calkins J.A. 40Ar/39Ar geochronology of Khapitsa plateau and Studyonaya river basalts and basaltic andesites in Central Kamchatka Depression, Kamchatka, Russia // Linka-ges Among Tectonics, Seismicity, Magma Genesis, and Eruption in Volcanic Arcs. IV International Biennial Workshop on Subduction Processes Emphasizing the Japan–Kurile–Kamchatka–Aleutian Arcs. Petropavlovsk-Kamchatsky: IVS FEB RAS, 2004. P. 53–54.
  19. Churikova T.G., Gordeychik B.N., Ivanov B.V., Wörner G. Relationship between Kamen Volcano and the Klyuchevskaya group of volcanoes (Kamchatka) // J. Volcanol. Geotherm. Res. 2013. V. 263. P. 3–21.
  20. Churikova T.G., Gordeychik B.N., Iwamori H. et al. Petrological and geochemical evolution of the Tolbachik volcanic massif, Kamchatka, Russia // J. Volcanol. Geotherm. Res. 2015. V. 307. P. 156–181.
  21. Churikova T., Dorendorf F., Wörner G. Sources and fluids in the mantle wedge below Kamchatka, evidence from acros-sarc geochemical variation // J. Petrol. 2001. V. 42. № 8. P. 1567–1593.
  22. Dachs E., Geiger C.A. Thermodynamic behaviour of grossular–andradite, garnets: a calorimetric study // Eur. J. Mineral. 2019. V. 31. № 3. P. 443–451.
  23. Davydova V.O., Shcherbakov V.D., Plechov P.Y., Koulakov I.Y. Petrological evidence of rapid evolution of the magma plumbing system of Bezymianny volcano in Kamchatka before the December 20th, 2017 eruption // J. Volcanol. Geotherm. Res. 2022. V. 421. P. 107422.
  24. Ganino C., Libourel G., Bernard A. Fumarolic incrustations at Kudryavy volcano (Kamchatka) as a guideline for high-temperature (>850°C) extinct hydrothermal systems // J. Volcanol. Geotherm. Res. 2019. V. 376. P. 75–85.
  25. Georgatou A., Chiaradia M., Klaver M. Deep to shallow sulfide saturation at Nisyros active volcano //Geochem. Geophys. Geosyst. 2022. V. 23. № 2. P. e2021GC010161.
  26. Graham I.J. Petrography and origin of metasedimentary xenoliths in lavas from Tongariro Volcanic Centre // N. Z. J. Geol. Geophys. 1987. V. 30. № 2. P. 139–157.
  27. Grant J.A. Isocon analysis: A brief review of the method and applications // Phys. Chem. Earth, Parts A/B/C. 2005. V. 30. № 17–18. P. 997–1004.
  28. Grapes R. Pyrometamorphism. Springer Science & Business Media, 2011.
  29. Green R.G., Sens-Schönfelder C., Shapiro N. et al. Magmatic and sedimentary structure beneath the Klyuchevskoy volcanic group, Kamchatka, from ambient noise tomography // J. Geophys. Res.: Solid Earth. 2020. V. 125. № 3. P. e2019JB018900.
  30. Harker R.I., Tuttle O.F. Experimental data on the P (sub co 2)–T curve for the reaction; calcite-quartz wollastonite-carbon dioxide // Amer. J. Sci. 1956. V. 254. № 4. P. 239–256.
  31. Iacono-Marziano G., Le Vaillant M., Godel B.M. et al. The critical role of magma degassing in sulphide melt mobility and metal enrichment // Nat. Commun. 2022. V. 13. № 1. P. 1–10.
  32. Ionov D.A., Bénard A., Plechov P.Yu., Shcherbakov V.D. Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes // J. Volcanol. Geothermal Res. 2013. V. 263. P. 122–131.
  33. Jarosewich E., Nelen J.A., Norberg J.A. Reference samples for electron microprobe analysis // Geostandards Newsletter. 1980. V. 4. № 1. P. 43–47.
  34. Koulakov I., Abkadyrov I., Al Arifi N. et al. Three different types of plumbing system beneath the neighboring active volcanoes of Tolbachik, Bezymianny, and Klyuchevskoy in Kamchatka // J. Geophys. Res.: Solid Earth. 2017. V. 122. № 5. P. 3852–3874.
  35. Koulakov I., Plechov P., Mania R. et al. Anatomy of the Bezymianny volcano merely before an explosive eruption on 20.12. 2017 // Sci. Rep. 2021. V. 11. № 1. P. 1–12.
  36. Lee C.T.A., Tang M. How to make porphyry copper deposits // Earth Planet. Sci. Lett. 2020. V. 529. P. 115868.
  37. Lee C.T.A., Luffi P., Chin E.J. et al. Copper systematics in arc magmas and implications for crust-mantle differentiation // Science. 2012. V. 336. № 6077. P. 64–68.
  38. Lepage L.D. ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry // Comput. Geosci. 2003. V. 29. № 5. P. 673–678.
  39. Lesher C.M. Roles of xenomelts, xenoliths, xenocrysts, xenovolatiles, residues, and skarns in the genesis, transport, and localization of magmatic Fe-Ni-Cu-PGE sulfides and chromite // Ore Geol. Rev. 2017. V. 90. P. 465–484.
  40. López-Moro F.J. EASYGRESGRANT—A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems // Comput. Geosci. 2012. V. 39. P. 191.
  41. Martel C., Pichavant M., Di Carlo I. et al. Experimental constraints on the crystallization of silica phases in silicic magmas // J. Petrol. 2021. V. 62. № 1. P. egab004.
  42. Melekhova E. Camejo-Harry M., Blundy J. et al. Arc crust formation of Lesser Antilles revealed by crustal xenoliths from Petit St. Vincent //J. Petrol. 2022. V. 63. № 5. P. egac033.
  43. Moecher D.P., Chou I.M. Experimental investigation of andradite and hedenbergite equilibria employing the hydrogen sensor technique, with revised estimates of Delta f G 0 (sub m, 298) for andradite and hedenbergite // Amer. Mineral. 1990. V. 75. № 11–12. P. 1327–1341.
  44. Nachit H., Ibhi A., Ohoud M.B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites // C. R. Geosci. 2005. V. 337. №. 16. P. 1415–1420.
  45. Nakamura D. A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set // J. Metamorph. Geol. 2009. V. 27. № 7. P. 495–508.
  46. Palin R.M., White R.W., Green E.C. et al. High-grade metamorphism and partial melting of basic and intermediate rocks // J. Metamorph. Geol. 2016. V. 34. № 9. P. 871–892.
  47. Portnyagin M., Duggen S., Hauff F. et al. Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems // J. Volcanol. Geothermal Res. 2015. V. 307. P. 182–199.
  48. Pure L.R., Charlier B.L., Wilson C.J. et al. Chemical and isotopic changes induced by pyrometamorphism in metasedimentary xenoliths at Tongariro volcano, New Zealand // Lithos. 2021. V. 400. P. 106404.
  49. Putirka K.D. Thermometers and barometers for volcanic systems // Rev. Mineral. Geochem. 2008. V. 69. № 1. P. 61–120.
  50. Rutstein M.S. Re-examination of the wollastonite-hedenbergite (CaSiO3–CaFeSi2O6) equilibria // Amer. Mineral. 1971. V. 56. № 11–12. P. 2040–2052.
  51. Seryotkin Y.V., Sokol E.V., Kokh S.N. Natural pseudowollastonite: Crystal structure, associated minerals, and geological context // Lithos. 2012. V. 134. P. 75–90.
  52. Shcherbakov V.D., Plechov P.Y., Izbekov P.E., Shipman J.S. Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka // Contrib. Mineral. Petrol. 2011. V. 162. P. 83–99.
  53. Shimazaki H., Yamanaka T. Iron-wollastonite from skarns and its stability relation in the CaSiO3–CaFeSi2O6 join // Geochem. J. 1973. V. 7. № 2. P. 67–79.
  54. Sillitoe R.H. Porphyry copper systems // Econ. Geol. 2010. V. 105. № 1. P. 3–41.
  55. Sun W., Liang H.Y., Ling M.X. et al. The link between reduced porphyry copper deposits and oxidized magmas // Geochim. Cosmochim. Acta. 2013. V. 103. P. 263–275.
  56. Sun W., Shang X. In situ experiments reveal mineralization details of porphyry copper deposits // J. Oceanol. Limnol. 2022. V. 40. № 1. P. 110–112.
  57. Tanner S.B., Kerrick D.M., Lasaga A.C. Experimental kinetic study of the reaction; calcite + quartz <–> wollastonite + carbon dioxide, from 1 to 3 kilobars and 500 degrees to 850 degrees C // Amer. J. Sci. 1985. V. 285. № 7. P. 577–620.
  58. Taylor B.E., Liou J.G. The low-temperature stability of andradite in COH fluids // Amer. Mineral. 1978. V. 63. № 3–4. P. 378–393.
  59. Taylor S.R., McLennan S.M. The geochemical evolution of the continental crust // Rev. Geophys. 1995. V. 33. № 2. P. 241–265.
  60. Turner S.J., Izbekov P.E., Langmuir C. The magma plumbing system of Bezymianny Volcano: Insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions // J. Volcanol. Geothermal Res. 2013. V. 263. P. 108–121.
  61. Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. №. 3. P. 291–320.
  62. Zajacz Z., Seo J. H., Candela P.A. et al. The solubility of copper in high-temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes // Geochim. Cosmochim. Acta. 2011. V. 75. № 10. P. 2811–2827.
  63. Zelenski M., Kamenetsky V.S., Nekrylov N., Kontonikas-Charos A. High sulfur in primitive arc magmas, its origin and implications // Minerals. 2022. V. 12. № 1. P. 37.
  64. Zelenski M., Taran Y., Galle B. High emission rate of sulfuric acid from Bezymianny volcano, Kamchatka // Geophys. Res. Lett. 2015. V. 42. № 17. P. 7005–7013.
  65. Zelenski M., Simakin A., Taran Y. et al. Partitioning of elements between high-temperature, low-density aqueous fluid and si-licate melt as derived from volcanic gas geochemistry // Geochim. Cosmochim. Acta. 2021. V. 295. P. 112–134.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (5MB)
3.

Download (3MB)
4.

Download (3MB)
5.

Download (1MB)
6.

Download (4MB)
7.

Download (1003KB)
8.

Download (469KB)
9.

Download (257KB)
10.

Download (50KB)
11.

Download (236KB)

Copyright (c) 2023 В.О. Давыдова, В.Д. Щербаков, Н.А. Некрылов, П.Ю. Плечов, В.О. Япаскурт

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies