New Data on the Rock and Mineral Composition of Kharchinsky and Zarechny Volcanoes (Central Kamchatka depression): Heterogeneity of the Mantle Source and Peculiarities of Magma Evolution in Crust

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Kharchinsky and Zarechny volcanoes and the Kharchinsky Lake zone of monogenetic cones are unique eruptive centers of magnesian lavas located above the northern margin of the Pacific Plate subducting beneath Kamchatka. This work presents new geochemical data on the composition of rocks (55 samples) and minerals (over 900 analyses of olivine, pyroxenes, amphibole, and plagioclase) of these centers analyzed by XRF and LA-ICP-MS (rocks) and electron microprobe (minerals). Most of the studied rocks are represented by magnesian (Mg# = 60–75 mol. %), medium-K basalts and basaltic andesites. Moderate-magnesian (Mg# = = 52–59 mol. %) basaltic andesites are present among the monogenic cones of the Kharchinsky Lake. The rare rock varieties include high-K basalts-basaltic andesites of dikes in the center of the Kharchinsky volcano and magnesian andesites (Mg# = 58–61 mol. %) of the extrusions of Zarechnу volcano. The distribution of trace element contents in these samples demonstrates the enrichment of large-ion lithophile elements, light REEs and depletion of high field strength elements and heavy REEs typical of arc rocks. High-K basalts and basaltic andesites show anomalous enrichment in Ba (>1000 ppm), Th (>3.8 ppm), U (>1.8 ppm), Sr (>800 ppm, Sr/Y > 50) and light REE (La > 20 ppm); their compositions are close to those of low-Si adakites. Basalts and basaltic andesites contain high-Mg olivine phenocrysts (up to Fo92.6) and clinopyroxene (Mg# up to 91 mol. %). The rocks show petrographic and geochemical signs of fractional crystallization along with the processes of mineral accumulation and magma mixing. Some of the olivine phenocrysts show high NiO contents (up to 5000 ppm) and elevated Fe/Mn ratio (up to 80), interpreted as evidence of participation of the pyroxenite source in the magma generation processes. The use of Ca/Fe and Ni/Mg ratios allowed us to distinguish the composition fields and evolution trends of olivines associated with different sources – peridotite and pyroxenite, formed by the reaction of mantle wedge peridotites and high-Si melts of the subducted oceanic crust. The new data are consistent with other evidence of melting of the subducted Pacific plate edge beneath the northern part of the Central Kamchatka depression at the Kurile-Kamchatka and Aleutian subduction zone junction and testify to significant heterogeneity of the mantle in this area.

About the authors

N. V. Gorbach

Institute of Volcanology and Seismology, FEB RAS

Email: n_gorbach@mail.ru
Russia, Petropavlovsk-Kamchatsky

N. A. Nekrylov

Institute of Volcanology and Seismology, FEB RAS; A.E. Fersman Mineralogical Museum

Email: n_gorbach@mail.ru
Russia, Petropavlovsk-Kamchatsky; Russia, Moscow

M. V. Portnyagin

GEOMAR Helmholtz Centre for Ocean Research Kiel

Email: n_gorbach@mail.ru
Germany, Kiel

K. Hoernle

GEOMAR Helmholtz Centre for Ocean Research Kiel; Institute of Geosciences, Kiel University

Email: n_gorbach@mail.ru
Germany, Kiel; Germany, Kiel

References

  1. Волынец О.Н., Пономарева В.В., Бабанский А.Д. Магнезиальные базальты андезитового вулкана Шивелуч // Петрология. 1997. Т. 5. № 2. С. 206–221.
  2. Волынец О.Н., Мелекесцев И.В., Пономарева В.В., Ягодзински Дж.М. Харчинский и Заречный вулканы – уникальные центры позднеплейстоценовых магнезиальных базальтов на Камчатке: структурная приуроченность, морфология, возраст и геологическое строение вулканов // Вулканология и сейсмология. 1998. № 4–5. С. 5–18.
  3. Волынец О.Н., Мелекесцев И.В., Пономарева В.В., Ягодзински Дж.М. Харчинский и Заречный вулканы – уникальные центры позднеплейстоценовых магнезиальных базальтов на Камчатке: вещественный состав вулканических пород // Вулканология и сейсмология. 1999. № 1. С. 31–45.
  4. Волынец О.Н., Бабанский А.Д., Гольцман Ю.В. Изотопные и геохимические вариации в лавах вулканов Северной группы (Камчатка) в связи с особенностями процесса субдукции // Геохимия. 2000. № 10. С. 1067–1084.
  5. Горбач Н.В., Портнягин М.В. Геологическое строение и петрология лавового комплекса вулкана Молодой Шивелуч (Камчатка) // Петрология. 2011. Т. 19. № 2. С. 140–172.
  6. Кутыев Ф.Ш., Эрлих Э.Н. К петрологии базальтов Харчинской группы вулканов // Бюлл. Вулканол. станций. 1973. № 49. С. 83–92.
  7. Меняйлов А.А. Вулканы Харчинских гор // Тр. Лаб. вулканологиии. 1949. Вып. 6. С. 53–61.
  8. Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования // Под ред. Богатикова О.А., Петрова О.В., Шарпенок Л.Н. СПб.: Изд. ФГБУ “ВСЕГЕИ”, 2008. 203 с.
  9. Огородов Н.В., Белоусов В.И. Новые данные о вулканах Харчинском и Заречном // Бюлл. Вулканол. станций. 1961. № 31. С. 46–51.
  10. Портнягин М.В., Миронов Н.Л., Назарова Д.П. Распределение меди между оливином и расплавными включениями и ее содержание в примитивных островодужных магмах Камчатки // Петрология. 2017. Т. 25. № 4. С. 419–432.
  11. Секисова В.С., Смирнов С.З., Кузьмин Д.В. и др. Корово-мантийные ксенолиты: минералогия и петрогенезис // Геология и геофизика. 2021. Т. 62. № 3. С. 422–442.
  12. Симакин А.Г., Девятова В.Н., Салова Т.П., Шапошникова О.Ю. Экспериментальное исследование кристаллизации амфибола из высокомагнезиального андезитового расплава вулкана Шивелуч // Петрология. 2019. Т. 27. № 5. С. 476–495.
  13. Bryant J.A., Yogodzinski G.M., Churikova T.G. High-Mg# andesitic lavas of the Shisheisky Complex, Northern Kamchatka: implications for primitive calc-alkaline magmatism // Contrib. Mineral. Petrol. 2011. V. 161. Iss. 5. P. 791–810.
  14. Churikova T., Dorendorf F., Wörner G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation // J. Petrol. 2001. V. 42. Iss. 8. P. 1567–1593.
  15. Defant M.J., Drummond M.S Derivation of some modern arc magmas by melting of young subducted lithosphere // Nature. 1990. V. 347. P. 662–665.
  16. Gavrilenko M., Herzberg C., Vidito C. et al. A calcium-in-oli-vine geohygrometer and its application to subduction zone magmatism // J. Petrol. 2016. V. 57. Iss. 9. P. 1811–1832.
  17. Gill R. Igneous rocks and processes: a practical guide. Uni-ted Kingdom: John Wiley & Sons, 2011. 438 p.
  18. Gorbach N., Portnyagin M., Tembrel I. Volcanic structure and composition of Old Shiveluch volcano, Kamchatka // J. Volcanol. Geotherm. Res. 2013. V. 263. P. 193–208.
  19. Gorbach N., Philosofova T., Portnyagin M. Amphibole record of the 1964 plinian and following dome-forming eruptions of Shiveluch volcano, Kamchatka // J. Volcanol. Geotherm. Res. 2020. V. 407. 107108.
  20. Gordeychik B., Churikova T., Shea T. et al. Fo and Ni relations in olivine differentiate between crystallization and diffusion trends // J. Petrol. 2020. V. 61. Iss. 9.https://doi.org/10.1093/petrology/egaa083
  21. Govindaraju K. Compilation of working values and sample description for 383 geostandards // Geostand. Newslett. 1994. V. 18. P. 1–158.
  22. Herzberg C. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins // J. Petrol. 2011. V. 52. Iss. 1. P. 113–146.
  23. Herzberg C., Asimow P.D., Ionov D.A. et al. Nickel and helium evidence for melt above the core-mantle boundary // Nature. 2013. V. 493. Iss. 7432. P. 393–397.
  24. Jarosewich E., Nelen J.A., Norberg J.A. Reference samples for electron microprobe analysis // Geostand. Newslett. 1980. V. 4. P. 43–47.
  25. Jochum K.P., Weis U., Schwager B. et al. Reference values following ISO guidelines for frequently requested rock refe-rence materials // Geostand. Geoanalytical Res. 2016. V. 40. Iss. 3. P. 333–350.
  26. Leake B.E., Woolley A.R., Arps C.E.S. et al. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the mineralogical association // Mineral. Mag. 1997. V. 61. Iss. 3. P. 295–321.
  27. Lindsley D.H. Pyroxene thermometry // Amer. Mineral. 1983. V. 68. Iss. 5–6. P. 477–493.
  28. Martin H. Adakitic magmas: modern analogues of Archaean granitoids // Lithos. 1999. V. 46. № 3. P. 411–429.
  29. Martin H., Smithies R.H., Rapp R. et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution // Lithos. 2005. V. 79. № 1–2. P. 1–24.
  30. Moyen J.F. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature” // Lithos. 2009. V. 112. № 3–4. P. 556–574.
  31. Münker C., Wörner G., Yogodzinski G.M., Churikova T. Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas // Earth Planet. Sci. Lett. 2004. № 224. P. 275–293.
  32. Nekrylov N., Portnyagin M.V., Kamenetsky V.S. et al. Chromium spinel in Late Quaternary volcanic rocks from Kamchatka: implications for spatial compositional variability of subarc mantle and its oxidation state // Lithos. 2018. V. 322. P. 212–224.
  33. Nekrylov N., Kamenetsky V.S., Savelyev D.P. et al. Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: evidence for minor cryptic sulfide fractionation in primitive arc magmas // Lithos. 2022. Iss. 412–413. 106608.
  34. Nimis P., Ulmer P. Clinopyroxene geobarometry of magmatic rocks Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems // Contrib. Mineral. Petrol. 1998. V. 133. Iss. 1. P. 122–135.
  35. Nishizawa T., Nakamura H., Churikova T. et al. Genesis of ultra-high-Ni olivine in high-Mg andesite lava triggered by seamount subduction // Sci. Reports. 2017. V. 7. Iss. 1. 11515.
  36. Nikulin A., Levin V., Carr M. et al. Evidence for two upper mantle sources driving volcanism in Central Kamchatka // Earth Planet. Sci. Lett. 2012. V. 321–322. P. 14–19.
  37. Ponomareva V., Pendea I.F., Zelenin E. et al. The first continuous late Pleistocene tephra record from Kamchatka Peninsula (NW Pacific) and its volcanological and paleogeographic implications // Quaternary Sci. Rev. 2021. V. 257. 106838. https://doi.org/10.1016/j.quascirev.2021.106838
  38. Portnyagin M., Bindeman I., Hoernle K., Hauff F. Geochemistry of primitive lavas of the Central Kamchatka Depression: magma generation at the edge of the Pacific Plate // Eds. J. Eichelberger, E. Gordeev, M. Kasaharaet et al. Volcanism and Subduction: The Kamchatka Region. Vol. Geophysical Monograph 172. Amer. Geophys. Union, Washington D.C. 2007. P. 199–239.
  39. Portnyagin M.V., Sobolev A.V., Mironov N.L., Hoernle K. Pyroxenite melts involved in magma genesis in Kamchatka // 19th Annual VM Goldschmidt Conference, Davos, Switzerland, June 21–26. Geochim. Cosmochim. Acta. 2009. V. 73. Iss. 13. Supp. 1. A1044.
  40. Siegrist M., Yogodzinski G., Bizimis M. et al. Fragments of metasomatized forearc: origin and implications of mafic and ultramafic xenoliths from Kharchinsky Volcano, Kamchatka // Geochem. Geophys. Geosys. 2019. Iss. 9. P. 4426–4456.
  41. Siegrist M., Yogodzinski G.M., Bizimis M. Origins of Os-isotope and platinum-group element compositions of metasomatized peridotite and cumulate pyroxenite xenoliths from Kharchinsky Volcano, Kamchatka // Geochim. Cosmochim. Acta. 2021. V. 299. P. 130–150.
  42. Sobolev A.V., Hofmann A.W., Kuzmin D.V. et al. The amount of recycled crust in sources of mantle-derived melts // Science. 2007. V. 316. Iss. 5823. P. 412–417.
  43. Straub S.M., LaGatta A.B., Pozzo A.L.M.D., Langmuir C.H. Evidence from high-Ni olivines for a hybridized peridoti-te/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt // Geochem. Geophys. Geosys. 2008. Iss. 9. https://doi.org/10.1029/2007GC001583
  44. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geol. Soc. London, Spec. Publ. 1989. V. 42. Iss. 1. P. 313–345.
  45. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral. 2010. V. 95. Iss. 1. P. 185–187.
  46. Yogodzinski G.M., Lees J.M., Churikova T.G. et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges // Nature. 2001. V. 409. P. 500–504.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (2MB)
4.

Download (4MB)
5.

Download (795KB)
6.

Download (925KB)
7.

Download (680KB)
8.

Download (1014KB)
9.

Download (365KB)
10.

Download (372KB)

Copyright (c) 2023 Н.В. Горбач, Н.А. Некрылов, М.В. Портнягин, К. Хернле

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies