The origin of olivine basalts from Medvezhya Mount (Avachinsky group of volcanoes, Kamchatka): The evidence of assimilation of sulfide-bearing cumulates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The role and conditions of liquid immiscibility and crystallization of sulfide phase during evolution of subduction related magmas remains to be a debated topic, which bears relevance to mechanisms of porphyry copper deposit formation and evolution of the continental crust. We studied rare volcanic rocks with inclusions of magmatic sulfides in olivine – the basalts of Medvezhya Mount in the Avachinsky group of volcanoes. The rocks belong to primitive (Mg# = 66 mol. %) middle-K island arc olivine basalts. Olivine with normal zoning predominate (~98%) among phenocrysts. The olivine compositions are typical for Kamchatka basalts, except for an unusual trend of increase of MnO content from 0.20 to 0.55 wt. % and decrease of Fe/Mn from 60 to 35 with change of olivine composition from Fo87.8 to Fo78.2. Olivines of this group contain numerous inclusions of minerals of the spinel group varying in composition from chromium spinel to magnesian magnetite. Olivine phenocrysts with sulfide inclusions are characterized by the absence or weak reverse zoning and reduced contents of Ca, Ni, Mn, Cr, and Al. The estimated crystallization temperatures for olivines of the prevailing type are 1036–1241°C, for sulfide-bearing olivines – 1010–1062°C. The data suggest that crystallization of the main olivine population occurred under relatively shallow conditions and was accompanied by strong oxidation of the magmas. On the contrary, the zoning and composition features of sulfide-bearing olivine suggest its xenogenic origin and probable crystallization at conditions of deep crust from low temperature water-rich and/or low-Ca magmas. The results obtained confirm the possibility of saturation of oxidized island-arc magmas with sulfide phase at lower crustal conditions, but show that this process is rare and not typical for low-pressure crystallization stage.

About the authors

D. P. Savelyev

Institute of Volcanology and Seismology FEB RAS

Author for correspondence.
Email: savelyev@kscnet.ru
Russia, Petropavlovsk-Kamchatsky

N. V. Gorbach

Institute of Volcanology and Seismology FEB RAS

Email: savelyev@kscnet.ru
Russia, Petropavlovsk-Kamchatsky

M. V. Portnyagin

GEOMAR Helmholtz Centre for Ocean Research Kiel

Email: savelyev@kscnet.ru
Germany, Kiel

V. D. Shcherbakov

Lomonosov Moscow State University

Email: savelyev@kscnet.ru
Russia, Moscow

References

  1. Масуренков Ю.П., Егорова И.А., Пузанков М.Ю. и др. Авачинский вулкан // Действующие вулканы Камчатки. Т. 2. М.: Наука, 1991. С. 246–254.
  2. Николаев Г.С., Арискин А.А., Бармина Г.С. и др. Тестирование Ol–Oрx–Sp оксибарометра Балльхауса–Берри–Грина и калибровка нового уравнения для оценки окислительного состояния расплавов, насыщенных оливином и шпинелидом // Геохимия. 2016. № 4. С. 323–343.
  3. Портнягин М.В., Миронов Н.Л., Матвеев С.В., Плечов П.Ю. Петрология “авачитов” –высокомагнезиальных базальтов Авачинского вулкана, Камчатка: II. Расплавные включения в оливине // Петрология. 2005. Т. 13. № 4. С. 358–388.
  4. Пузанков М.Ю. Геохимическая зональность в островной дуге (на примере Авачинского ряда вулканов) // Геохимическая типизация магматических и метаморфических пород Камчатки. Научн. ред. А.П. Кривенко. Новосибирск, 1990. С. 114–128.
  5. Тобелко Д.П., Портнгяин М.В., Крашенинников С.П. и др. Состав и условия образования примитивных магм Карымского вулканического центра (Камчатка) по данным изучения расплавных включений и микроэлементной термобарометрии // Петрология. 2019. Т. 27. № 3. С. 258–281.
  6. Хубуная С.А., Гонтовая Л.И., Соболев А.В., Хубуная В.С. К вопросу о магматических очагах под вулканом Ключевской (Камчатка) // Вулканология и сейсмология. 2018. № 2. С. 14–30.
  7. Ariskin A.A., Barmina G.S. An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 2. Fe-Ti oxides // Contrib. Mine-ral. Petrol. 1999. V. 134. P. 251–263.
  8. Ariskin A.A., Barmina G.S. COMAGMAT: Development of a magma crystallization model and its petrological applications // Geochem. Int. 2004. V. 42. Suppl. 1. P. 1–157.
  9. Ariskin A.A., Danyushevsky L.V., Bychkov K.A. et al. Mode-ling solubility of Fe-Ni sulfides in basaltic magmas: the effect of nickel // Econom. Geol. 2013. V. 108. P. 1983–2003.
  10. Amosova A.A., Panteeva S.V., Chubarov V.M., Finkelshtein A.L. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg) // Spectrochim Acta. Part B. 2016. V. 122. P. 62–68.
  11. Bai Z.-J., Zhong H., Hu R.-Z., Zhu W.-G. Early sulfide saturation in arc volcanic rocks of southeast China: implications for the formation of co-magmatic porphyry–epithermal Cu–Au deposits // Geochim. Cosmochim. Acta. 2020. V. 280. P. 66–84.
  12. Batanova V.G., Thompson J.M., Danyushevsky L.V. et al. New olivine reference material for in situ microanalysis // Geostand. Geoanal. Res. 2019. V. 43. P. 453–473.
  13. Blundy J., Melekhova E., Ziberna L. et al. Effect of redox on Fe–Mg–Mn exchange between olivine and melt and an oxybarometer for basalts // Contrib. Mineral. Petrol. 2020. V. 175. P. 103.
  14. Chen K., Rudnick R.L., Wang Z. et al. How mafic was the Archean upper continental crust? Insights from Cu and Ag in ancient glacial diamictites // Geochim. Cosmochim. Acta. 2019. V. 278. P. 16–29.
  15. Coogan L.A., Saunders A.D., Wilson R.N. Aluminum-in-oli-vine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces // Chem. Geol. 2014. V. 368. P. 1–10.
  16. Fonseca R.O.C., Campbell I.H., O’Neill H.S.C., Fitzgerald J.D. Oxygen solubility and speciation in sulphide-rich mattes // Geochim. Cosmochim. Acta. 2008. V. 72. № 11. P. 2619–2635.
  17. Gavrilenko M., Herzberg C., Vidito C. et al. A Calcium-in-olivine geohygrometer and its application to subduction zone magmatism // J. Petrol. 2016. V. 57. P. 1811–1832.
  18. Herzberg C. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins // J. Petrol. 2011. V. 52. № 1. P. 113–146.
  19. Humayun M., Qin L., Norman M.D. Geochemical evidence for excess iron in the mantle beneath Hawaii // Science. 2000. V. 306. P. 91–94.
  20. Ionov D.A. Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka // J. Petrology. 2010. V. 51. № 1–2. P. 327–361.
  21. Jenner F.E, O’Neill H.S.C., Arculus R.J., Mavrogenes J.A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu // J. Petrol. 2010. V. 51. № 12. P. 2445–2464.
  22. Kamenetsky V.S., Zelenski M., Gurenko A. et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt // Chem. Geol. 2017. V. 471. P. 92–110.
  23. Kepezhinskas P., Berdnikov N., Kepezhinskas N., Konovalova N. Metals in Avachinsky peridotite xenoliths with implications for redox heterogeneity and metal enrichment in the Kamchatka mantle wedge // Lithos. 2022. 106610.
  24. Krasheninnikov S.P., Bazanova L.I., Ponomareva V.V., Portnyagin M.V. Detailed tephrochronology and composition of major Holocene eruptions from Avachinsky, Kozelsky, and Koryaksky volcanoes in Kamchatka // J. Volcanology and Geothermal Res. 2020. V. 408. 107088.
  25. Lee C.-T.A., Tang M. How to make porphyry copper depo-sits // Earth Planet. Sci. Lett. 2020. V. 529. 115868.
  26. Lee C-T.A., Luffi P., Chin E.J. et al. Copper systematics in arc magmas and implications for crust-mantle differentiation // Science. 2012. V. 336. 6077.
  27. Libourel G. Systematics of calcium partitioning between oli-vine and silicate melt: implications for melt structure and calcium content of magmatic olivines // Contrib. Mineral. Petrol. 1999. V. 136. P. 63–80.
  28. Li C.S., Ripley E.M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits // Mineral. Deposita. 2005. V. 40. № 2. P. 218–230.
  29. Li Y., Audetat A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions // Earth Planet. Sci. Lett. 2012. V. 355. P. 327–340.
  30. Liu Y., Samaha N.-T., Baker D.R. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts // Geochim. Cosmochim. Acta. 2007. V. 71. P. 1783–1799.
  31. Matjuschkin V., Blundy J.D., Brooker R.A. The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for porphyry the formation of copper deposits // Contrib. Mineral. Petrol. 2016. V. 171. P. 66.
  32. Mironov N., Portnyagin M., Botcharnikov R. et al. Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure // Earth Planet. Sci. Lett. 2015. V. 425. P. 1–11.
  33. Mungall J.E., Brenan J.M., Godel B. et al. Transport of me-tals and sulphur in magmas by flotation of sulphide melt on vapour bubbles // Nature Geosci. 2015. V. 8. P. 216–219.
  34. Nekrylov N., Portnyagin M.V., Kamenetsky V.S. et al. Chromium spinel in Late Quaternary volcanic rocks from Kamchatka: implications for spatial compositional variability of subarc mantle and its oxidation state // Lithos. 2018. V. 322. P. 212–224.
  35. Nekrylov N., Kamenetsky V.S., Savelyev D.P. et al. Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: evidence for minor cryptic sulfide fractionation in primitive arc magmas // Lithos. 2022. V. 412–413. March 2022. 106608
  36. Park J.-W., Campbell I.H., Kim J., Moon J.-W. The role of late sulfide saturation in the formation of a Cu- and Au-rich magma: insights from the platinum group element geochemistry of Niuatahi–Motutahi Lavas, Tonga Rear Arc // J. Petrol. 2015. V. 56. P. 59–81.
  37. Richards J.P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny // Lithos. 2015. V. 233. P. 27–45.
  38. Savelyev D.P., Kamenetsky V.S., Danyushevsky L.V. et al. Immiscible sulfide melts in primitive oceanic magmas: evidence and implications from picrite lavas (Eastern Kamchatka, Russia) // Amer. Mineral. 2018. V. 103. № 6. P. 886–898.
  39. Zelenski M., Kamenetsky V.S., Mavrogenes J.A. et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts // Chemical. Geol. 2018. V. 478. P. 102–111.
  40. Zelenski M., Kamenetsky V.S., Nekrylov N., Kontonikas-Charos A. High sulfur in primitive arc magmas, its origin and implications // Minerals. 2022. V. 12. № 1. P. 37.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (953KB)
5.

Download (1MB)
6.

Download (1MB)
7.

Download (92KB)
8.

Download (929KB)
9.

Download (1MB)
10.

Download (166KB)
11.

Download (58KB)

Copyright (c) 2023 Д.П. Савельев, Н.В. Горбач, М.В. Портнягин, В.Д. Щербаков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies